Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/40009
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computing-
dc.creatorLiu, M-
dc.creatorLi, W-
dc.creatorJi, D-
dc.date.accessioned2016-05-17T10:08:52Z-
dc.date.available2016-05-17T10:08:52Z-
dc.identifier.issn1003-0077-
dc.identifier.urihttp://hdl.handle.net/10397/40009-
dc.language.isozhen_US
dc.publisher中国中文信息学会 ; 北京信息工程学院en_US
dc.rights© 2010 China Academic Journal Electronic Publishing House. It is to be used strictly for educational and research use.en_US
dc.rights© 2010 中国学术期刊电子杂志出版社。本内容的使用仅限于教育、科研之目的。en_US
dc.subjectEvent-based summarizationen_US
dc.subjectEvent semantic relation graphen_US
dc.subjectDbscan clustering algorithmen_US
dc.titleMulti-document summarization based on event term semantic relation graph clusteringen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage77-
dc.identifier.epage85-
dc.identifier.volume24-
dc.identifier.issue5-
dcterms.abstract基于事件的抽取式摘要方法一般首先抽 取那些描述重要事件的句子,然后把它们重组并生成摘要。该文将事件定义为事件项以及与其关联的命名实体,并聚焦从外部语义资源获取的事件项语义关系。首先 基于事件项语义关系创建事件项语义关系图并使用改进的DBSCAN算法对事件项进行聚类,接着为每类选择一个代表事件项或者选择一类事件项来表示文档集的 主题,最后从文档抽取那些包含代表项并且最重要的句子生成摘要。该文的实验结果证明在多文档自动摘要中考虑事件项语义关系是必要的和可行的。 -
dcterms.abstractEvent-based extractive summarization attempts to extract sentences and re-organize them in a summary according to the important events that the sentences describe.In this paper,we define the event as event terms and their associated entities and emphasize on the event term semantic relations derived from external linguistic resource.Firstly,the graph based on the event term semantic relations is constructed and the event terms in the graph are grouped into clusters using the revised DBSCAN clustering algorithm.Then,we select one event term as the representative term for each cluster or one cluster to present the main topic of the documents.Lastly,we generate the summary by extracting the sentences which contain more informative representative terms from the documents.The evaluation on the DUC 2001 document sets shows it is necessary to take the semantic relations among the event terms into consideration and our summarization approach based on event term semantic relation graph clustering is effective. -
dcterms.accessRightsopen accessen_US
dcterms.alternative基于事件项语义图聚类的多文档摘要方法-
dcterms.bibliographicCitation中文信息学报 (Journal of Chinese information processing), 2010, v. 24, no. 5, p. 77-85-
dcterms.isPartOf中文信息学报 (Journal of Chinese information processing)-
dcterms.issued2010-
dc.identifier.rosgroupidr54395-
dc.description.ros2010-2011 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
r54395.pdf360.62 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

425
Last Week
2
Last month
Citations as of Nov 10, 2025

Downloads

261
Citations as of Nov 10, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.