Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/3270
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical Engineering-
dc.contributorDepartment of Applied Physics-
dc.creatorJia, Y-
dc.creatorLuo, H-
dc.creatorOr, DSW-
dc.creatorWang, Y-
dc.creatorChan, HLW-
dc.date.accessioned2014-12-11T08:23:18Z-
dc.date.available2014-12-11T08:23:18Z-
dc.identifier.issn0021-8979-
dc.identifier.urihttp://hdl.handle.net/10397/3270-
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rights© 2009 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Y. Jia et al., J. Appl. Phys. 105, 124109 (2009) and may be found at http://jap.aip.org/resource/1/japiau/v105/i12/p124109_s1.en_US
dc.subjectCrystal growth from melten_US
dc.subjectFerroelectric Curie temperatureen_US
dc.subjectFerroelectric materialsen_US
dc.subjectFerroelectric transitionsen_US
dc.subjectHopping conductionen_US
dc.subjectIron compoundsen_US
dc.subjectLead compoundsen_US
dc.subjectNiobium compoundsen_US
dc.subjectPermittivityen_US
dc.subjectVacancies (crystal)en_US
dc.titleDielectric behavior and phase transition in perovskite oxide Pb(Fe[sub ½]Nb[sub ½])[sub 1−x]Ti[sub x]O₃ single crystalen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationAuthor name used in this publication: Siu Wing Oren_US
dc.description.otherinformationAuthor name used in this publication: Helen Lai Wa Chanen_US
dc.identifier.spage1-
dc.identifier.epage4-
dc.identifier.volume105-
dc.identifier.issue12-
dc.identifier.doi10.1063/1.3156655-
dcterms.abstractPerovskite oxide Pb(Fe[sub ½]Nb[sub ½])₀.₅₂Ti₀.₄₈O₃ crystals, which were grown using a modified Bridgman method, show a high low-frequency dielectric constant response at room temperature. The Curie phase transition occurs at 523 K. The characteristic frequency of the dielectric dispersion versus the inverse of temperature obeys an Arrhenius relation, which shows a thermally activated behavior. The thermal activation energy for relaxation was found to be ~0.14 eV. The high dielectric permittivity was attributed to oxygen vacancies and conduction via hopping carriers.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of applied physics, 15 June 2009, v. 105, no. 12, 124109, p. 1-4-
dcterms.isPartOfJournal of applied physics-
dcterms.issued2009-06-15-
dc.identifier.isiWOS:000267599600113-
dc.identifier.scopus2-s2.0-67650230260-
dc.identifier.eissn1089-7550-
dc.identifier.rosgroupidr42188-
dc.description.ros2008-2009 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
JApplPhys_105_124109.pdf511.65 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

100
Last Week
1
Last month
Citations as of Apr 21, 2024

Downloads

193
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

19
Last Week
0
Last month
0
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

18
Last Week
0
Last month
0
Citations as of Apr 25, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.