Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/3264
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorWu, Y-
dc.creatorChen, GL-
dc.creatorHui, XD-
dc.creatorLiu, CT-
dc.creatorLin, Y-
dc.creatorShang, XC-
dc.creatorLu, ZP-
dc.date.accessioned2014-12-11T08:23:30Z-
dc.date.available2014-12-11T08:23:30Z-
dc.identifier.issn0021-8979-
dc.identifier.urihttp://hdl.handle.net/10397/3264-
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rights© 2009 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Y. Wu et al., J. Appl. Phys. 106, 083512 (2009) and may be found at http://jap.aip.org/resource/1/japiau/v106/i8/p083512_s1.en_US
dc.subjectAluminium alloysen_US
dc.subjectAmorphous stateen_US
dc.subjectBoron alloysen_US
dc.subjectChromium alloysen_US
dc.subjectCobalt alloysen_US
dc.subjectCopper alloysen_US
dc.subjectIron alloysen_US
dc.subjectMetallic glassesen_US
dc.subjectNickel alloysen_US
dc.subjectPlastic deformationen_US
dc.subjectShear deformationen_US
dc.subjectSilicon alloysen_US
dc.subjectStress-strain relationsen_US
dc.subjectZirconium alloysen_US
dc.titleA quantitative link between microplastic instability and macroscopic deformation behaviors in metallic glassesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1-
dc.identifier.epage6-
dc.identifier.volume106-
dc.identifier.issue8-
dc.identifier.doi10.1063/1.3247968-
dcterms.abstractBased on mechanical instability of individual shear transformation zones (STZs), a quantitative link between the microplastic instability and macroscopic deformation behavior of metallic glasses was proposed. Our analysis confirms that macroscopic metallic glasses comprise a statistical distribution of STZ embryos with distributed values of activation energy, and the microplastic instability of all the individual STZs dictates the macroscopic deformation behavior of amorphous solids. The statistical model presented in this paper can successfully reproduce the macroscopic stress-strain curves determined experimentally and readily be used to predict strain-rate effects on the macroscopic responses with the availability of the material parameters at a certain strain rate, which offer new insights into understanding the actual deformation mechanism in amorphous solids.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of applied physics, 15 Oct. 2009, v. 106, no. 8, 083512, p. 1-6-
dcterms.isPartOfJournal of applied physics-
dcterms.issued2009-10-15-
dc.identifier.isiWOS:000271358100034-
dc.identifier.scopus2-s2.0-70350735774-
dc.identifier.eissn1089-7550-
dc.identifier.rosgroupidr46092-
dc.description.ros2009-2010 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
JApplPhys_106_083512.pdf378.17 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

325
Last Week
2
Last month
Citations as of Apr 21, 2024

Downloads

211
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

12
Last Week
0
Last month
0
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

12
Last Week
0
Last month
0
Citations as of Apr 25, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.