Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/2893
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorJian, A-
dc.creatorZhang, X-
dc.creatorZhu, WM-
dc.creatorYu, M-
dc.date.accessioned2014-12-11T08:28:14Z-
dc.date.available2014-12-11T08:28:14Z-
dc.identifier.issn1932-1058 (online)-
dc.identifier.urihttp://hdl.handle.net/10397/2893-
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rights© 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in A.Q. Jian, X.M. Zhang, W.M. Zhu and M. Yu, Biomicrofluidics 4:4, 043008 (2010) and may be found at http://bmf.aip.org/resource/1/biomgb/v4/i4/p043008_s1.en_US
dc.subjectMicrofluidicsen_US
dc.subjectOptical prismsen_US
dc.subjectOptical sensorsen_US
dc.subjectRefractive index measurementen_US
dc.subjectRefractometersen_US
dc.subjectSurface plasmon resonanceen_US
dc.titleOptofluidic refractometer using resonant optical tunneling effecten_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationAuthor name used in this publication: A. Q. Jianen_US
dc.description.otherinformationAuthor name used in this publication: X. M. Zhangen_US
dc.description.otherinformationAuthor name used in this publication: W. M. Zhuen_US
dc.identifier.spage1-
dc.identifier.epage11-
dc.identifier.volume4-
dc.identifier.issue4-
dc.identifier.doi10.1063/1.3502671-
dcterms.abstractThis paper presents the design and analysis of a liquid refractive index sensor that utilizes a unique physical mechanism of resonant optical tunneling effect (ROTE). The sensor consists of two hemicylindrical prisms, two air gaps, and a microfluidic channel. All parts can be microfabricated using an optical resin NOA81. Theoretical study shows that this ROTE sensor has extremely sharp transmission peak and achieves a sensitivity of 760 nm/refractive index unit (RIU) and a detectivity of 85 000 RIU⁻¹. Although the sensitivity is smaller than that of a typical surface plasmon resonance (SPR) sensor (3200 nm/RIU) and is comparable to a 95% reflectivity Fabry–Pérot (FP) etalon (440 nm/RIU), the detectivity is 17000 times larger than that of the SPR sensor and 85 times larger than that of the FP etalon. Such ROTE sensor could potentially achieve an ultrahigh sensitivity of 10⁻⁹ RIU, two orders higher than the best results of current methods.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationBiomicrofluidics, Dec. 2010, v. 4, no. 4, 043008, p. 1-11-
dcterms.isPartOfBiomicrofluidics-
dcterms.issued2010-12-
dc.identifier.isiWOS:000285768400011-
dc.identifier.pmid21267085-
dc.identifier.rosgroupidr55732-
dc.description.ros2010-2011 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
BIOMGB-000004-043008_1.pdf1.99 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

186
Last Week
1
Last month
Citations as of Mar 24, 2024

Downloads

158
Citations as of Mar 24, 2024

WEB OF SCIENCETM
Citations

18
Last Week
0
Last month
0
Citations as of Mar 28, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.