Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/2505
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorZhang, S-
dc.creatorYan, F-
dc.creatorYang, B-
dc.creatorCao, W-
dc.date.accessioned2014-12-11T08:22:38Z-
dc.date.available2014-12-11T08:22:38Z-
dc.identifier.issn0003-6951-
dc.identifier.urihttp://hdl.handle.net/10397/2505-
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rights© 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in S.T. Zhang et al., Appl. Phys. Lett. 97, 122901 (2010) and may be found at http://link.aip.org/link/?apl/97/122901en_US
dc.subjectBarium compoundsen_US
dc.subjectBismuth compoundsen_US
dc.subjectCrystal structureen_US
dc.subjectElectrostrictionen_US
dc.subjectInternal stressesen_US
dc.subjectMaterials preparationen_US
dc.subjectPhase diagramsen_US
dc.subjectPiezoceramicsen_US
dc.subjectPotassium compoundsen_US
dc.subjectSodium compoundsen_US
dc.subjectX-ray diffractionen_US
dc.titlePhase diagram and electrostrictive properties of Bi₀.₅Na₀.₅TiO₃-BaTiO₃-K₀.₅ Na₀.₅NbO₃ceramicsen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationAuthor name used in this publication: Shan-Tao Zhangen_US
dc.identifier.spage1-
dc.identifier.epage3-
dc.identifier.volume97-
dc.identifier.issue12-
dc.identifier.doi10.1063/1.3491839-
dcterms.abstractPhase diagram of Bi₀.₅Na₀.₅TiO₃-BaTiO₃–K₀.₅Na₀.₅NbO₃ternary system has been analyzed and (0.94−x)BNT–0.06BT–xKNN (0.15≤ x ≤ 0.30) ceramics have been prepared and investigated. Pseudocubic structures were confirmed by x-ray diffractions and its preliminary Rietveld refinements. P-E, S-E, and S-P² profiles (where P, E, and S denote polarization, electric field, and strain, respectively) indicate electrostrictive behavior of all ceramics. The compositions with x=0.20 and 0.25 show pure electrostrictive characteristics. The dissipation energy, electrostrictive strain, and electrostrictive coefficient have been determined and compared with other lead-free and lead-containing electrostrictors. The electrostrictive coefficient can reach as high as 0.026 m⁴/C², about 1.5 times of the value of traditional Pb-based electrostrictors.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied physics letters, 20 Sept. 2010, v. 97, no. 12, 122901, p. 1-3-
dcterms.isPartOfApplied physics letters-
dcterms.issued2010-09-20-
dc.identifier.isiWOS:000282124700046-
dc.identifier.scopus2-s2.0-77957111462-
dc.identifier.eissn1077-3118-
dc.identifier.rosgroupidr50833-
dc.description.ros2010-2011 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
ApplPhysLett_97_122901.pdf471.28 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

142
Last Week
1
Last month
Citations as of Mar 24, 2024

Downloads

262
Citations as of Mar 24, 2024

SCOPUSTM   
Citations

89
Last Week
0
Last month
1
Citations as of Mar 28, 2024

WEB OF SCIENCETM
Citations

86
Last Week
0
Last month
2
Citations as of Mar 28, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.