Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/1888
Title: | Measuring semantic similarity between concepts in visual domain | Authors: | Wang, Z Guan, G Wang, J Feng, DD |
Issue Date: | 2008 | Source: | Proceedings of the 2008 IEEE 10th Workshop on Multimedia Signal Processing : 8-10 October, 2008, Cairns, Australia, p. 628-633 | Abstract: | Concept similarity has been intensively researched in the natural language processing domain due to its important role in many applications such as language modeling and information retrieval. There are few studies on measuring concept similarity in visual domain, though concept based multimedia information retrieval has attracted a lot of attentions. In this paper, we present a scalable framework for such a purpose, which is different from traditional approaches to exploring correlation among concepts in image/video annotation domain. For each concept, a model based on feature distribution is built using sample images collected from the Internet. And similarity between concepts is measured with the similarity between their models. Hereby, a Gaussian Mixture Model (GMM) is employed to model each concept and two similarity measurements are investigated. Experimental results on 13,974 images of 16 concepts collected through image search engines have demonstrated that the similarity between concepts is very close to human perception. In addition, the entropy of GMM cluster distributions can be a good indication of selecting concepts for image/video annotation. | Keywords: | Gaussian processes Content-based retrieval Multimedia systems Search engines Semantic Web Video retrieval |
Publisher: | IEEE | ISBN: | 978-1-4244-2295-1 | DOI: | 10.1109/MMSP.2008.4665152 | Rights: | © 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. |
Appears in Collections: | Conference Paper |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Wang_et_al_Measuring_Semantic_Similarity.pdf | 1.32 MB | Adobe PDF | View/Open |
Page views
105
Last Week
1
1
Last month
Citations as of May 28, 2023
Downloads
184
Citations as of May 28, 2023
SCOPUSTM
Citations
3
Last Week
0
0
Last month
0
0
Citations as of May 25, 2023

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.