Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/16325
DC Field | Value | Language |
---|---|---|
dc.contributor | School of Optometry | - |
dc.creator | Chin, MP | - |
dc.creator | Chu, PHW | - |
dc.creator | Cheong, AMY | - |
dc.creator | Chan, HHL | - |
dc.date.accessioned | 2015-10-13T08:28:07Z | - |
dc.date.available | 2015-10-13T08:28:07Z | - |
dc.identifier.uri | http://hdl.handle.net/10397/16325 | - |
dc.language.iso | en | en_US |
dc.publisher | Public Library of Science | en_US |
dc.rights | © 2015 Chin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited | en_US |
dc.rights | The following publication: Chin MP, Chu PHW, Cheong AMY, Chan HHL (2015) Human Electroretinal Responses to Grating Patterns and Defocus Changes by Global Flash Multifocal Electroretinogram. PLoS ONE 10(4): e0123480 is available at https://doi.org/10.1371/journal.pone.0123480 | en_US |
dc.title | Human electroretinal responses to grating patterns and defocus changes by global flash multifocal electroretinogram | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.volume | 10 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.doi | 10.1371/journal.pone.0123480 | en_US |
dcterms.abstract | The electrical response of the retina was examined as a function of retinal region, using stimuli of various spatial frequencies in the first experiment. In the second experiment, the regional response of the retina to defocus at high and low spatial frequencies was investigated. Twenty three subjects were recruited for global flash multifocal electroretinogram (mfERG) in experiment 1. Black and white gratings (printed on plastic transparent sheets) of four spatial frequencies (SF), 0.24, 1.2, 2.4 and 4.8 cycle per degree were presented in front of the mfERG stimulation. The amplitudes and implicit times of the direct (DC) and induced (IC) components of mfERG responses were pooled into six concentric rings for analysis. There was low amplitude DC at low SF, which increased with increasing SF, and which decreased with increasing eccentricity. The IC was high in amplitude at all SF and reduced in amplitude with increasing eccentricity. Our findings suggested that outer and inner retina had different characteristics in processing spatial details. In experiment 2, Twenty-three young adults were recruited for mfERG measurement. The retinal electrical responses for low (0.24cpd) and high (4.8cpd) SF under fully corrected conditions of short-term negative defocus (-2D) and short term positive defocus (+2D) conditions were measured. There was a sign-dependent response to defocus in the DC response, mainly in peripheral regions. The sign dependent response at low SF was more obvious than that at high SF, and was located more peripherally. The IC response showed no clear trends for either defocus condition. The human retina seems to have a decoding system for optical defocus, which was tuned for low spatial frequency, and was located in the retinal near periphery. | - |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | PLoS one, 2015, v. 10, no. 4, e0123480 | - |
dcterms.isPartOf | PLoS one | - |
dcterms.issued | 2015 | - |
dc.identifier.scopus | 2-s2.0-84929484512 | - |
dc.identifier.pmid | 25874564 | - |
dc.identifier.eissn | 1932-6203 | en_US |
dc.identifier.rosgroupid | 2014000353 | - |
dc.description.ros | 2014-2015 > Academic research: refereed > Publication in refereed journal | en_US |
dc.description.validate | 201810_a bcma | en_US |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | OA_IR/PIRA | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | CC | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Chin_Human_electroretinal_responses.PDF | 4.13 MB | Adobe PDF | View/Open |
Page views
152
Last Week
1
1
Last month
Citations as of Jan 5, 2025
Downloads
99
Citations as of Jan 5, 2025
SCOPUSTM
Citations
27
Last Week
0
0
Last month
0
0
Citations as of Jan 9, 2025
WEB OF SCIENCETM
Citations
24
Last Week
0
0
Last month
0
0
Citations as of Jan 9, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.