Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/14593
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | - |
| dc.creator | Chang, SS | - |
| dc.creator | Kim, JK | - |
| dc.creator | Lee, HWJ | - |
| dc.creator | Chan, CK | - |
| dc.date.accessioned | 2015-06-23T09:16:53Z | - |
| dc.date.available | 2015-06-23T09:16:53Z | - |
| dc.identifier.issn | 1687-1820 | - |
| dc.identifier.uri | http://hdl.handle.net/10397/14593 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.rights | ©2013 Chang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is properly cited. | en_US |
| dc.rights | The following publication Chang, S. S., Kim, J. K., Lee, H. W. J., & Chan, C. K. (2013). On the hierarchical variational inclusion problems in Hilbert spaces. Fixed Point Theory and Applications, 2013, 179, 1-16 is available at https://dx.doi.org/10.1186/1687-1812-2013-179 | en_US |
| dc.subject | Demiclosed principle | en_US |
| dc.subject | Hierarchical optimization problems | en_US |
| dc.subject | Hierarchical variational inclusion problem | en_US |
| dc.subject | Hierarchical variational inequality problem | en_US |
| dc.subject | Quasi-nonexpansive mapping | en_US |
| dc.subject | Strongly quasi-nonexpansive mapping | en_US |
| dc.title | On the hierarchical variational inclusion problems in Hilbert spaces | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.epage | 16 | - |
| dc.identifier.volume | 2013 | - |
| dc.identifier.doi | 10.1186/1687-1812-2013-179 | - |
| dcterms.abstract | The purpose of this paper is by using Maingé's approach to study the existence and approximation problem of solutions for a class of hierarchical variational inclusion problems in the setting of Hilbert spaces. As applications, we solve the convex programming problems and quadratic minimization problems by using the main theorems. Our results extend and improve the corresponding recent results announced by many authors. | - |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Fixed point theory and applications, 2013, v. 2013, 179, p. 1-16 | - |
| dcterms.isPartOf | Fixed point theory and applications | - |
| dcterms.issued | 2013 | - |
| dc.identifier.isi | WOS:000322442200001 | - |
| dc.identifier.scopus | 2-s2.0-84902507575 | - |
| dc.identifier.eissn | 1687-1812 | - |
| dc.identifier.artn | 179 | - |
| dc.identifier.rosgroupid | r69754 | - |
| dc.description.ros | 2013-2014 > Academic research: refereed > Publication in refereed journal | - |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | OA_IR/PIRA | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | CC | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Chang_Hierarchical_Variational_Inclusion.pdf | 363.8 kB | Adobe PDF | View/Open |
Page views
200
Last Week
2
2
Last month
Citations as of Nov 9, 2025
Downloads
105
Citations as of Nov 9, 2025
SCOPUSTM
Citations
3
Last Week
0
0
Last month
0
0
Citations as of Dec 19, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



