Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/1282
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorChau, KW-
dc.date.accessioned2014-12-11T08:27:55Z-
dc.date.available2014-12-11T08:27:55Z-
dc.identifier.isbn978-3-540-36667-6-
dc.identifier.urihttp://hdl.handle.net/10397/1282-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofseriesLecture notes in computer science ; v. 4099-
dc.rights© Springer-Verlag Berlin Heidelberg 2006. The original publication is available at http://www.springerlink.com.en_US
dc.subjectParticle swarm optimizationen_US
dc.subjectConstruction litigation outcomeen_US
dc.subjectArtificial intelligence technologiesen_US
dc.subjectAlgorithmsen_US
dc.subjectBackpropagationen_US
dc.subjectArtificial neural networksen_US
dc.subjectDecision makingen_US
dc.subjectCost effectivenessen_US
dc.titleA split-step PSO algorithm in predicting construction litigation outcomeen_US
dc.typeBook Chapteren_US
dc.description.otherinformationSeries: Lecture notes in computer scienceen_US
dc.identifier.doi10.1007/11801603_163-
dcterms.abstractOwing to the highly complicated nature and the escalating cost involved in construction claims, it is highly desirable for the parties to a dispute to know with some certainty how the case would be resolved if it were taken to court. The use of artificial neural networks can be a cost-effective technique to help to predict the outcome of construction claims, on the basis of characteristics of cases and the corresponding past court decisions. This paper presents the application of a split-step particle swarm optimization (PSO) model for training perceptrons to predict the outcome of construction claims in Hong Kong. The advantages of global search capability of PSO algorithm in the first step and local fast convergence of Levenberg-Marquardt algorithm in the second step are combined together. The results demonstrate that, when compared with the benchmark backward propagation algorithm and the conventional PSO algorithm, it attains a higher accuracy in a much shorter time.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn Q Yang & G Webb (Eds.), PRICAI 2006 : trends in artificial intelligence : 9th Pacific Rim International Conference on Artificial Intelligence, Guilin, China, August 7-11, 2006 : proceedings, p. 1211-1215. Berlin: Springer, 2006-
dcterms.issued2006-
dc.identifier.isiWOS:000240091500163-
dc.identifier.scopus2-s2.0-33749565014-
dc.relation.ispartofbookPRICAI 2006 : trends in artificial intelligence : 9th Pacific Rim International Conference on Artificial Intelligence, Guilin, China, August 7-11, 2006 : proceedings-
dc.relation.conferencePacific Rim International Conference on Artificial Intelligence [PRICAI]-
dc.publisher.placeBerlinen_US
dc.identifier.rosgroupidr28101-
dc.description.ros2005-2006 > Academic research: refereed > Publication in refereed journal-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Book Chapter
Files in This Item:
File Description SizeFormat 
LNAI16.pdfPre-published version63.86 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

162
Last Week
1
Last month
Citations as of Dec 22, 2024

Downloads

200
Citations as of Dec 22, 2024

SCOPUSTM   
Citations

1
Last Week
0
Last month
0
Citations as of Dec 19, 2024

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
0
Citations as of Dec 19, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.