Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/1278
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorCheng, C-
dc.creatorChau, KW-
dc.creatorSun, Y-
dc.creatorLin, J-
dc.date.accessioned2014-12-11T08:24:05Z-
dc.date.available2014-12-11T08:24:05Z-
dc.identifier.isbn978-3-540-25914-5-
dc.identifier.urihttp://hdl.handle.net/10397/1278-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofseriesLecture notes in computer science ; v. 3498-
dc.rights© Springer-Verlag Berlin Heidelberg 2005. The original publication is available at http://www.springerlink.com.en_US
dc.subjectArtificial neural networksen_US
dc.subjectAlgorithmsen_US
dc.subjectBackpropagationen_US
dc.subjectCorrelation methodsen_US
dc.subjectDischarge (fluid mechanics)en_US
dc.subjectRiver flow dischargesen_US
dc.subjectReservoirs (water)en_US
dc.subjectProject managementen_US
dc.titleLong-term prediction of discharges in Manwan Reservoir using artificial neural network modelsen_US
dc.typeBook Chapteren_US
dc.description.otherinformationAuthor name used in this publication: Kwokwing Chauen_US
dc.identifier.doi10.1007/11427469_165-
dcterms.abstractSeveral artificial neural network (ANN) models with a feed-forward, back-propagation network structure and various training algorithms, are developed to forecast daily and monthly river flow discharges in Manwan Reservoir. In order to test the applicability of these models, they are compared with a conventional time series flow prediction model. Results indicate that the ANN models provide better accuracy in forecasting river flow than does the auto-regression time series model. In particular, the scaled conjugate gradient algorithm furnishes the highest correlation coefficient and the smallest root mean square error. This ANN model is finally employed in the advanced water resource project of Yunnan Power Group.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn J Wang, X Liao & Z Yi (Eds.), Advances in neural networks--ISNN 2005 : Second International Symposium on Neural Networks, Chongqing, China, May 30-June 1, 2005 : proceedings, p. 1040-1045. Berlin: Springer, 2005-
dcterms.issued2005-
dc.identifier.isiWOS:000230167700165-
dc.identifier.scopus2-s2.0-24944573867-
dc.relation.ispartofbookAdvances in neural networks--ISNN 2005 : Second International Symposium on Neural Networks, Chongqing, China, May 30-June 1, 2005 : proceedings-
dc.relation.conferenceInternational Symposium on Neural Networks [ISNN]-
dc.publisher.placeBerlinen_US
dc.identifier.rosgroupidr23965-
dc.description.ros2004-2005 > Academic research: refereed > Publication in refereed journal-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Book Chapter
Files in This Item:
File Description SizeFormat 
LNCS8.pdfPre-published version150.13 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

147
Last Week
0
Last month
Citations as of Dec 22, 2024

Downloads

424
Citations as of Dec 22, 2024

SCOPUSTM   
Citations

147
Last Week
0
Last month
3
Citations as of Dec 19, 2024

WEB OF SCIENCETM
Citations

126
Last Week
0
Last month
4
Citations as of Dec 26, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.