Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/117086
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorWang, Cen_US
dc.creatorGuo, Jen_US
dc.creatorLiu, Den_US
dc.creatorLin, Zen_US
dc.creatorGuo, Sen_US
dc.creatorCai, Sen_US
dc.creatorYan, Jen_US
dc.creatorHe, Ben_US
dc.creatorZhang, Zen_US
dc.creatorZhang, Men_US
dc.creatorChai, Yen_US
dc.date.accessioned2026-02-02T07:22:07Z-
dc.date.available2026-02-02T07:22:07Z-
dc.identifier.issn1748-3387en_US
dc.identifier.urihttp://hdl.handle.net/10397/117086-
dc.language.isoenen_US
dc.publisherNature Publishing Groupen_US
dc.titleBand-hybridized selenium contact for p-type semiconductorsen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author's file: Band-hybridized selenium for low-resistance contact to p-type semiconductorsen_US
dc.identifier.doi10.1038/s41565-025-02084-yen_US
dcterms.abstractSemimetals can establish a low-resistance contact to semiconductors by suppressing metal-induced gap states. Although semimetals like bismuth have enabled an ultralow contact resistance for n-type two-dimensional semiconductors by mitigating metal-induced gap states, achieving a similar performance for p-type two-dimensional counterparts remains a notable hurdle. Here we introduce an ultrathin selenium interfacial layer with the highest work function among elements, effectively reducing the Schottky barrier height at the interface. Critically, the selenium layer interacts with the gold electrode, inducing band hybridization that transforms the contact interface from a semiconductor to a semimetal. This semimetallic characteristic, with its low density of states near the Fermi level, suppresses the formation of detrimental metal-induced gap states within the semiconductor. Applying this band-hybridized semimetallic contact to p-type WSe2 transistors results in a reduction in contact resistance to 540 Ω μm. Furthermore, the devices achieve a saturated ON-state current density of up to 430 μA μm−1 with an 80-nm channel length. This methodology is highly transferable and can be readily applied to other p-type semiconductors, including black phosphorus and carbon nanotubes, offering a scalable and reliable pathway for establishing low-resistance electrical contacts to nanoscale p-type semiconductor devices.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationNature nanotechnology, Published: 08 December 2025, Latest Research articles, https://doi.org/10.1038/s41565-025-02084-yen_US
dcterms.isPartOfNature nanotechnologyen_US
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105024364594-
dc.identifier.pmid41361026-
dc.identifier.eissn1748-3395en_US
dc.description.validate202602 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.SubFormIDG000837/2026-01-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work is supported by the National Natural Science Foundation of China (grant number 62425405 to Y.C.), MOST National Key Technologies R&D Programme (grant number 2022YFA1203804 to Y.C.), Research Grant Council of Hong Kong (grant numbers 15301023 and CRS_PolyU502/22 to Y.C.) and the Hong Kong Polytechnic University (grant number WZ4X to Y.C.).en_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo2026-12-08en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-12-08
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.