Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/117004
DC FieldValueLanguage
dc.contributorDepartment of Management and Marketing-
dc.creatorQin, Yen_US
dc.creatorLuo, Cen_US
dc.creatorXu, Zen_US
dc.creatorWang, Xen_US
dc.creatorŠkare, Men_US
dc.date.accessioned2026-01-21T03:54:47Z-
dc.date.available2026-01-21T03:54:47Z-
dc.identifier.issn2029-4913en_US
dc.identifier.urihttp://hdl.handle.net/10397/117004-
dc.language.isoenen_US
dc.publisherVilnius Gediminas Technical Universityen_US
dc.rightsCopyright © 2025 The Author(s). Published by Vilnius Gediminas Technical Universityen_US
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en_US
dc.rightsThe following publication Qin, Y., Luo, C., Xu, Z., Wang, X., & Škare, M. (2025). Decoding tourist satisfaction for sustainable economic development: a multi-method configuration framework using online reviews. Technological and Economic Development of Economy, 31(6), 1801-1839 is available at https://doi.org/10.3846/tede.2025.23251.en_US
dc.subjectFsQCAen_US
dc.subjectOnline reviewsen_US
dc.subjectThree-factor theoryen_US
dc.subjectTourism economyen_US
dc.subjectTourist satisfactionen_US
dc.titleDecoding tourist satisfaction for sustainable economic development : a multi-method configuration framework using online reviewsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1801en_US
dc.identifier.epage1839en_US
dc.identifier.volume31en_US
dc.identifier.issue6en_US
dc.identifier.doi10.3846/tede.2025.23251en_US
dcterms.abstractOnline reviews are crucial to understanding tourist satisfaction (TSA) in the digital tourism era. This study deconstructs the factors leading to high TSA performance in reviews, offering guidance for long-term economic benefits for destinations and businesses. Building on the three-factor theory, we create a framework utilizing text mining, affective distribution computing, and fuzzy-set qualitative comparative analysis (fsQCA) to identify patterns driving high TSA. We employ topic modeling to extract destination attributes from reviews, quantifying their performance through affective distribution computing. An enhanced Kano model classifies tourist needs based on emotional expressions in reviews. We investigate how basic, performance and excitement attributes interact and influence TSA. Additionally, we apply the coupling coordination degree model (CCDM) to analyze attribute interconnections within configurations. Our results show that no single attribute leads to specific outcomes; relatively, high TSA results from a combination of attributes. This study identifies three normative causal recipes and is the first to clarify the complex interactions in satisfaction management within the three-factor theory framework, addressing a significant knowledge gap. Ultimately, our operational guidelines aim to sustain the economic vitality of the tourism industry.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationTechnological and economic development of economy, 21 Nov. 2025, v. 31, no. 6, p. 1801-1839en_US
dcterms.isPartOfTechnological and economic development of economyen_US
dcterms.issued2025-11-21-
dc.identifier.scopus2-s2.0-105022939821-
dc.identifier.eissn2029-4921en_US
dc.description.validate202601 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.