Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116801
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.contributorMainland Development Office-
dc.contributorPhotonics Research Institute-
dc.creatorWang, C-
dc.creatorWei, Q-
dc.creatorRen, H-
dc.creatorWong, KL-
dc.creatorLiu, Q-
dc.creatorZhou, L-
dc.creatorWang, P-
dc.creatorCai, S-
dc.creatorYin, J-
dc.creatorLi, M-
dc.date.accessioned2026-01-21T01:39:47Z-
dc.date.available2026-01-21T01:39:47Z-
dc.identifier.issn0935-9648-
dc.identifier.urihttp://hdl.handle.net/10397/116801-
dc.language.isoenen_US
dc.publisherWiley-VCHen_US
dc.subject2D heterostructureen_US
dc.subjectHot carrier extractionen_US
dc.subjectHot carrier photocurrenten_US
dc.subjectMoS₂en_US
dc.subjectPerovskite multiple Quantum wellsen_US
dc.titleEfficient gate-tunable hot-carrier photocurrent from perovskite multiple quantum wellsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume37-
dc.identifier.issue5-
dc.identifier.doi10.1002/adma.202413839-
dcterms.abstractHot-carrier relaxation above the bandgap results in significant energy losses, making the extraction of hot carriers a critical challenge for efficient hot-carrier photocurrent generation in devices. In this study, we observe long-lived hot carriers in the metal-halide perovskite multiple quantum wells, (BA)₂(MA)ₙ₋₁PbₙI₃ₙ₊₁ (n = 3), and demonstrate effective hot-hole photocurrent generation using 2D MoS₂ as an extraction layer. A high external quantum efficiency of short-circuit hot-carrier photocurrent of up to 35.4% is achieved. Further enhancement in photocurrent efficiency and open-circuit photovoltage is achieved when a gate electric field is applied, resulting in an external quantum efficiency of up to 61.9%. Evidence of hot-hole extraction is validated through operando transient reflection measurements on the working devices, with studies that depend on wavelength, carrier density, and gate voltage. DFT calculations on the heterostructure devices under different bias voltages further elucidate the mechanism of hot-hole extraction enhancement. These findings underscore the potential of perovskite multiple quantum wells as long-lived hot-carrier generators and highlight the role of 2D transition metal dichalcogenide semiconductors as efficient hot-carrier extraction electrodes for low-power optoelectronics.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAdvanced materials, 5 Feb. 2025, v. 37, no. 5, 2413839-
dcterms.isPartOfAdvanced materials-
dcterms.issued2025-02-05-
dc.identifier.scopus2-s2.0-85211801002-
dc.identifier.pmid39665332-
dc.identifier.eissn1521-4095-
dc.identifier.artn2413839-
dc.description.validate202601 bcjz-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000708/2025-12en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextDr. C.W. and Dr. Q.W. contributed equally to this work. This work was supported by Research Grant Council of Hong Kong (Project No. 25301522, 15301323, 15300824, C1055-23G, C5067-23G), Hong Kong Innovation and Technology Fund (ITS/064/22), National Natural Science Foundation of China (22373081), the Shenzhen Science, Technology and Innovation Commission (JCYJ20210324131806018) and Department of Science and Technology of Guangdong Province (2024A1515011261). J.Y. acknowledges financial support from Hong Kong Polytechnic University (P0042930, P0050410, and P0053682), Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU 25300823 and PolyU 15300724), and National Natural Science Foundation of China (62422512).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-02-05en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-02-05
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.