Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116765
DC FieldValueLanguage
dc.contributorSchool of Fashion and Textilesen_US
dc.creatorMing, Yen_US
dc.creatorShi, Sen_US
dc.creatorCai, Wen_US
dc.creatorLiu, Jen_US
dc.creatorChen, Den_US
dc.creatorHu, Xen_US
dc.creatorYu, Ren_US
dc.creatorZhou, Xen_US
dc.creatorTawiah, Ben_US
dc.creatorFei, Ben_US
dc.date.accessioned2026-01-19T07:20:55Z-
dc.date.available2026-01-19T07:20:55Z-
dc.identifier.issn1385-8947en_US
dc.identifier.urihttp://hdl.handle.net/10397/116765-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectAdvanced thermal managementen_US
dc.subjectAnisotropic heat conductionen_US
dc.subjectBiodegradable devicesen_US
dc.subjectElectrical conductivityen_US
dc.subjectSolar steam generationen_US
dc.titleA scalable wood-based interfacial evaporator assisted with localized Joule heating for round-the-clock operationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume504en_US
dc.identifier.doi10.1016/j.cej.2024.158690en_US
dcterms.abstractThe evaporation efficiency of solar-driven interfacial steam is significantly affected by the diurnal variations in solar irradiance and is further compressed by the absence of light. This work proposes a wood-based interfacial evaporator with an auxiliary heat mode to achieve round-the-clock operations. The device was constructed using sustainable, cost-effective in-situ Ni-P electroless plating followed by hole drilling and surface graphite spray-coating. The self-floating evaporator achieves an evaporation rate of 2.20 kg m−2h−1 under 1 Sun illumination and 2 V input in 3.5 wt% NaCl solution. The realized rate can be attributed to the localized interfacial heat induced by the electroless-plated Ni-P alloy (R<inf>sheet</inf> = 1.45 Ω/sq). Moreover, adopting the novel hierarchical advantages, including mesoporous nature, low anisotropic thermal conductivity of wood, and reduced evaporation enthalpy in Ni-P film (1893 J/g), the device further reaches a daytime evaporation yield of 8.47kg m−2 on cloudy days and 14.68 kg m−2 on sunny days, respectively. And a yield of 5.33 kg m−2 with an electrical energy input of ∼ 0.71 kW m−2 is recorded during nighttime. This performance implies a significant step towards wood-based evaporators for round-the-clock water harvesting and shows potential for upscaling devices to all-weather 3D evaporators.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationChemical engineering journal, 15 Jan. 2025, v. 504, 158690en_US
dcterms.isPartOfChemical engineering journalen_US
dcterms.issued2025-01-15-
dc.identifier.scopus2-s2.0-85213553529-
dc.identifier.eissn1873-3212en_US
dc.identifier.artn158690en_US
dc.description.validate202601 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000710/2025-12-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe authors acknowledge financial support from Innovation and Technology Fund ITP/023/22TP ; Wuyi University Collaboration Fund 1-ZGD6 ; the ESG and Sustainable Fashion Hub of Greater Bay Area (1-WZ2H).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-01-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-01-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.