Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116735
DC FieldValueLanguage
dc.contributorSchool of Fashion and Textilesen_US
dc.contributorDepartment of Food Science and Nutritionen_US
dc.creatorCao, Cen_US
dc.creatorGu, Jen_US
dc.creatorZhu, Wen_US
dc.creatorLi, Hen_US
dc.creatorLiu, Ren_US
dc.creatorZhang, Wen_US
dc.creatorLi, Ren_US
dc.creatorLi, Den_US
dc.creatorLing, Jen_US
dc.creatorGe, Men_US
dc.creatorWang, Xen_US
dc.creatorYao, Xen_US
dc.creatorFei, Ben_US
dc.date.accessioned2026-01-15T08:30:15Z-
dc.date.available2026-01-15T08:30:15Z-
dc.identifier.issn1616-301Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/116735-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.subjectBiocompatibilityen_US
dc.subjectEnhanced radiative coolingen_US
dc.subjectHigh interfacial bindingen_US
dc.subjectLiquid metalen_US
dc.subjectWound managementen_US
dc.titleHighly adhesive liquid metal interface-enabled stretchable bioelectronics with enhanced radiative cooling for wound managementen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1002/adfm.202516990en_US
dcterms.abstractLiquid metal (LM) bioelectronics are widely used in wearable devices and healthcare monitoring. However, engineering bioelectronics simultaneously exhibiting high stretchability, thermal management, and sufficient biocompatibility remains challenging. Here, a bioelectronic device containing an electrospun fiber mat embedded with LM-polyvinyl alcohol (PVA) composite and a passive radiative cooling (PRC) layer is shown to harvest the abovementioned properties. With the help of abundant dynamic hydrogen bonds, the PRC layer shows high adhesion energy of 71.2 J m−2 to the fiber mat, which provides the device with an enhanced radiative cooling performance, with a reduced Joule heat temperature of 17.1 °C under the applied voltage of 2.0 V. When stretched to 100% strain, their performance shows negligible change compared to the original state. The as-prepared devices also exhibit outstanding conductivity (1661.7 S cm−1), antimicrobial properties, high air permeability (111.4 mm s−1), and moisture permeability (4102.5 g m−2 day−1). With all these features, a skin-interfaced wound management e-patch is constructed, demonstrating high efficiency for accelerating wound healing under sunlight.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAdvanced functional materials, First published: 29 September 2025, Early View, e16990, https://doi.org/10.1002/adfm.202516990en_US
dcterms.isPartOfAdvanced functional materialsen_US
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105018017520-
dc.identifier.eissn1616-3028en_US
dc.identifier.artne16990en_US
dc.description.validate202601 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000696/2025-11-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was supported by the PolyU Postdoc Matching Fund (1-W32C), PolyU Distinguished Postdoctoral Fellowship Scheme (4-YWEX), National Natural Science Foundation of China (52202256), the Natural Science Foundation of Jiangsu Province of China (BK20240956, BK20220612), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (24KJB430033).en_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo0000-00-00 (to be updated)en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 0000-00-00 (to be updated)
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.