Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/116721
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Physics | en_US |
| dc.contributor | Photonics Research Institute | en_US |
| dc.creator | Chen, Y | en_US |
| dc.creator | Wei, Q | en_US |
| dc.creator | Fu, J | en_US |
| dc.creator | Lin, S | en_US |
| dc.creator | Ren, H | en_US |
| dc.creator | Liu, Q | en_US |
| dc.creator | Zhou, L | en_US |
| dc.creator | Yin, J | en_US |
| dc.creator | Li, M | en_US |
| dc.date.accessioned | 2026-01-15T07:57:05Z | - |
| dc.date.available | 2026-01-15T07:57:05Z | - |
| dc.identifier.uri | http://hdl.handle.net/10397/116721 | - |
| dc.language.iso | en | en_US |
| dc.publisher | American Chemical Society | en_US |
| dc.title | Hot-electron extraction from perovskite quantum dots for photovoltage enhancement | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 5439 | en_US |
| dc.identifier.epage | 5446 | en_US |
| dc.identifier.volume | 10 | en_US |
| dc.identifier.issue | 11 | en_US |
| dc.identifier.doi | 10.1021/acsenergylett.5c02578 | en_US |
| dcterms.abstract | Rapid energy loss from hot-carrier relaxation above the bandgap limits optoelectronic efficiency. A key unmet challenge for hot-carrier utilization is developing practical systems that combine long hot-carrier lifetimes in absorbers with efficient extraction in devices. Here, we fabricate CsPb1–xSnxI3 perovskite quantum dots (QDs) with long hot-carrier lifetimes under low pump intensity─critical for real applications. We also design Cs-doped TiO2 nanorod arrays as hot-carrier high-pass filters; their tuned band structure enables around 82% hot-electron extraction from surface-sensitized QDs, confirmed by visible/near-IR transient absorption and supported by DFT/NAMD calculations. Proof-of-concept hot-carrier solar cells based on these QDs-sensitized nanorod arrays show a 12% open-circuit voltage increase (up to 1.13 eV) vs normal cells, attributed to hot-carrier photocurrent (73% quantum efficiency at 400 nm vs 600 nm). Hot-carrier thermionic emission modeling validates results, providing a promising platform for photovoltaics beyond the Shockley–Queisser limit. | en_US |
| dcterms.accessRights | embargoed access | en_US |
| dcterms.bibliographicCitation | ACS energy letters, 14 Nov. 2025, v. 10, no. 11, p. 5439-5446 | en_US |
| dcterms.isPartOf | ACS energy letters | en_US |
| dcterms.issued | 2025-11-14 | - |
| dc.identifier.scopus | 2-s2.0-105018574282 | - |
| dc.identifier.eissn | 2380-8195 | en_US |
| dc.description.validate | 202601 bcch | en_US |
| dc.description.oa | Not applicable | en_US |
| dc.identifier.SubFormID | G000681/2025-11 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | This work was supported by Research Grant Council of Hong Kong (Project No. 25301522, 15301323, 25300823, 15300724 and C5003-24E), Hong Kong Innovation and Technology Fund (ITS/064/22), National Natural Science Foundation of China (22373081 and 62422512), The Science Fund Program for Distinguished Young Scientists (Overseas) E541RC01, the Shenzhen Science, Technology and Innovation Commission (JCYJ20210324131806018), and Department of Science and Technology of Guangdong Province (2024A1515011261). | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.date.embargo | 2026-10-13 | en_US |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



