Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116721
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.contributorPhotonics Research Instituteen_US
dc.creatorChen, Yen_US
dc.creatorWei, Qen_US
dc.creatorFu, Jen_US
dc.creatorLin, Sen_US
dc.creatorRen, Hen_US
dc.creatorLiu, Qen_US
dc.creatorZhou, Len_US
dc.creatorYin, Jen_US
dc.creatorLi, Men_US
dc.date.accessioned2026-01-15T07:57:05Z-
dc.date.available2026-01-15T07:57:05Z-
dc.identifier.urihttp://hdl.handle.net/10397/116721-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.titleHot-electron extraction from perovskite quantum dots for photovoltage enhancementen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage5439en_US
dc.identifier.epage5446en_US
dc.identifier.volume10en_US
dc.identifier.issue11en_US
dc.identifier.doi10.1021/acsenergylett.5c02578en_US
dcterms.abstractRapid energy loss from hot-carrier relaxation above the bandgap limits optoelectronic efficiency. A key unmet challenge for hot-carrier utilization is developing practical systems that combine long hot-carrier lifetimes in absorbers with efficient extraction in devices. Here, we fabricate CsPb1–xSnxI3 perovskite quantum dots (QDs) with long hot-carrier lifetimes under low pump intensity─critical for real applications. We also design Cs-doped TiO2 nanorod arrays as hot-carrier high-pass filters; their tuned band structure enables around 82% hot-electron extraction from surface-sensitized QDs, confirmed by visible/near-IR transient absorption and supported by DFT/NAMD calculations. Proof-of-concept hot-carrier solar cells based on these QDs-sensitized nanorod arrays show a 12% open-circuit voltage increase (up to 1.13 eV) vs normal cells, attributed to hot-carrier photocurrent (73% quantum efficiency at 400 nm vs 600 nm). Hot-carrier thermionic emission modeling validates results, providing a promising platform for photovoltaics beyond the Shockley–Queisser limit.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationACS energy letters, 14 Nov. 2025, v. 10, no. 11, p. 5439-5446en_US
dcterms.isPartOfACS energy lettersen_US
dcterms.issued2025-11-14-
dc.identifier.scopus2-s2.0-105018574282-
dc.identifier.eissn2380-8195en_US
dc.description.validate202601 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000681/2025-11-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was supported by Research Grant Council of Hong Kong (Project No. 25301522, 15301323, 25300823, 15300724 and C5003-24E), Hong Kong Innovation and Technology Fund (ITS/064/22), National Natural Science Foundation of China (22373081 and 62422512), The Science Fund Program for Distinguished Young Scientists (Overseas) E541RC01, the Shenzhen Science, Technology and Innovation Commission (JCYJ20210324131806018), and Department of Science and Technology of Guangdong Province (2024A1515011261).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-10-13en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-10-13
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.