Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116703
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.contributorMainland Development Officeen_US
dc.creatorLiu, Yen_US
dc.creatorHao, Yen_US
dc.creatorWang, Cen_US
dc.creatorLi, Gen_US
dc.creatorWen, GLen_US
dc.creatorLai, SKen_US
dc.date.accessioned2026-01-13T06:36:16Z-
dc.date.available2026-01-13T06:36:16Z-
dc.identifier.issn0360-5442en_US
dc.identifier.urihttp://hdl.handle.net/10397/116703-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectElectromagnetic−triboelectric hybrid approachen_US
dc.subjectFrequency-up approachen_US
dc.subjectRoller-belt mechanismen_US
dc.subjectSpeed amplificationen_US
dc.subjectTri-stable nonlinearityen_US
dc.titleEngineering a motion-enhanced tri-stable hybrid energy converter for capturing low-frequency wave energyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume322en_US
dc.identifier.doi10.1016/j.energy.2025.135583en_US
dcterms.abstractThis paper presents a new design concept of incorporating a multi-stable nonlinear system with speed amplification designed for a hybrid-based low-frequency wave energy converter (WEC). The design features a tri-stable nonlinear, array-type electromagnetic generator paired with a conveyor belt-style, grating-structured, freestanding triboelectric generator. A roller-belt mechanism can increase the relative speed between the oscillator and translators of the hybrid WEC by a factor of two. The combination of the array magnet and speed amplification also enables the generation of voltage frequency in the electromagnetic generator. The mechanical and electrical characteristics of the fully integrated WEC are assessed through both experimental measurements and numerical calculations. Experimental results show that the designed WEC operates effectively within a frequency range of 0.1–2 Hz, achieving a peak power output of ∼311 mW at 2 Hz under an acceleration of 0.25 g. Ultimately, a capacitor charging experiment carried out in a wave environment shows that the power supply is sufficient for powering small electronic devices.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEnergy, 1 May 2025, v. 322, 135583en_US
dcterms.isPartOfEnergyen_US
dcterms.issued2025-05-01-
dc.identifier.scopus2-s2.0-86000744689-
dc.identifier.eissn1873-6785en_US
dc.identifier.artn135583en_US
dc.description.validate202601 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000699/2025-12-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextFunding text 1: The work described in this paper was supported by the National Natural Science Foundation of China (Grant Nos. 12472028, 12372024, and 12402024), the Science Research Project of Hebei Education Department (Grant No. BJ2025048), and the Natural Science Foundation of Hebei Province (Grant Nos. A2024203009 and A2023203027).; Funding text 2: The work described in this paper was supported by the National Natural Science Foundation of China (Grant Nos. 12002300 and 12372024) and the Natural Science Foundation of Hebei Province (Grant No. A2021203013).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-05-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-05-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.