Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116700
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorSun, Yen_US
dc.creatorYang, Zen_US
dc.creatorLi, Ben_US
dc.creatorYang, Qen_US
dc.creatorGuo, Aen_US
dc.creatorGao, Hen_US
dc.creatorWang, Gen_US
dc.creatorHuang, Hen_US
dc.creatorYu, Fen_US
dc.date.accessioned2026-01-13T03:47:56Z-
dc.date.available2026-01-13T03:47:56Z-
dc.identifier.issn0021-9797en_US
dc.identifier.urihttp://hdl.handle.net/10397/116700-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.subjectBifunctional catalysten_US
dc.subjectCarbon bath methoden_US
dc.subjectFe-FeOxen_US
dc.subjectFlash nanoprecipitationen_US
dc.subjectMOFsen_US
dc.subjectZinc-air batteryen_US
dc.titleFe-FeOx nanoparticles anchored on nitrogen-doped carbon support : a robust bifunctional catalyst for zinc-air batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume704en_US
dc.identifier.doi10.1016/j.jcis.2025.139320en_US
dcterms.abstractDeveloping bifunctional electrocatalysts with exceptional activity and stability for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is crucial for advancing zinc-air batteries (ZABs). However, the prohibitive cost of precious metal catalysts and the challenge of optimizing bifunctionality in non-precious alternatives remain significant hurdles. This study innovatively synthesizes Fe-FeOₓ nanoparticles anchored on nitrogen-doped carbon (Fe-FeOₓ/NC) by coupling flash nanoprecipitation (FNP) with a carbon bath method (CBM). FNP dramatically reduces the metal-organic framework (MOF) synthesis time, offering a pathway for continuous production, and subsequent CBM yields the Fe-FeOₓ/NC catalyst. Remarkably, this catalyst exhibits outstanding bifunctional electrocatalytic performance in alkaline media, evidenced by the potential gap (ΔE = E<inf>j=10</inf>-E<inf>1/2</inf>) of 0.705 V. Through in-depth in-suit characterization and theoretical calculations, we elucidate the origin of its high activity: OER activity primarily stems from the Fe site within the oxide, while ORR activity originates from C-N<inf>x</inf> (C) site. Notably, ZABs employing Fe-FeO<inf>x</inf>/NC demonstrate a high specific capacity of 719 mAh·g<inf>Zn</inf>−1, and exceptional cycling stability exceeding 400 h. This work not only presents a high-performance catalyst but also provides novel insights into the synergistic role of distinct active sites, guiding the design of advanced oxygen electrocatalysts.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationJournal of colloid and interface science, 15 Feb. 2026, v. 704, pt. 1, 139320en_US
dcterms.isPartOfJournal of colloid and interface scienceen_US
dcterms.issued2026-02-15-
dc.identifier.scopus2-s2.0-105019643570-
dc.identifier.eissn1095-7103en_US
dc.identifier.artn139320en_US
dc.description.validate202601 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000689/2025-11-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was financially supported by Xinjiang Science and Technology Program (2023TSYCCX0118), Bingtuan Science and Technology Program (No.2023AB033) and National Natural Science Foundation of China (21865025).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2028-02-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2028-02-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.