Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116696
DC FieldValueLanguage
dc.contributorMainland Development Officeen_US
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.contributorOtto Poon Charitable Foundation Smart Cities Research Instituteen_US
dc.creatorWang, Sen_US
dc.creatorLi, Yen_US
dc.creatorShao, Cen_US
dc.creatorWang, Pen_US
dc.creatorWang, Aen_US
dc.creatorZhuge, Cen_US
dc.date.accessioned2026-01-13T00:52:40Z-
dc.date.available2026-01-13T00:52:40Z-
dc.identifier.issn0306-2619en_US
dc.identifier.urihttp://hdl.handle.net/10397/116696-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectCharging demand predictionen_US
dc.subjectElectric vehiclesen_US
dc.subjectGated recurrent unit.en_US
dc.subjectGraph convolutional neural networken_US
dc.subjectSpatial-temporal graph recurrent networken_US
dc.titleAn adaptive spatio-temporal graph recurrent network for short-term electric vehicle charging demand predictionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume383en_US
dc.identifier.doi10.1016/j.apenergy.2025.125320en_US
dcterms.abstractPredicting Electric vehicle (EV) charging demand can facilitate the efficient operation and management of the smart power grid and intelligent transportation systems. We propose an adaptive spatial-temporal graph recurrent network (ASTGRN) to predict the EV charging demand in short term at the charging station level. Specifically, we design an adaptive graph learning layer that learns the spatial correlations in a data-driven manner. Additionally, an embedding project layer is integrated to enhance the graph learning layer. Subsequently, a graph recurrent layer consisting graph convolutional kernel and gated recurrent unit is employed to extract spatial-temporal features from the observations. We evaluate the proposed ASTGRN model using a real-world EV GPS trajectory dataset containing charging information of over 76,000 EVs in Beijing. The experiment results suggest that ASTGRN achieves state-of-the-art performance compared to those advanced spatial-temporal prediction models (e.g., Temporal Graph Convolutional Network and GraphWave Net). The effectiveness of the proposed model in charging demand prediction indicates that the spatial correlation between different charging stations may not be related to geographical distance in the charging demand prediction task, and the use of prior knowledge of geographical location may undermine model performance.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationApplied energy, 1 Apr. 2025, v. 383, 125320en_US
dcterms.isPartOfApplied energyen_US
dcterms.issued2025-04-01-
dc.identifier.scopus2-s2.0-85216114252-
dc.identifier.eissn1872-9118en_US
dc.identifier.artn125320en_US
dc.description.validate202601 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000683/2025-12-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis research was supported by the Double First-Class Innovative Research Project at The People's Public Security University of China (2023SYL09).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-04-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-04-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.