Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116641
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorMa, Sen_US
dc.creatorZheng, Gen_US
dc.creatorQian, Men_US
dc.creatorZhang, Xen_US
dc.date.accessioned2026-01-09T00:53:54Z-
dc.date.available2026-01-09T00:53:54Z-
dc.identifier.issn0921-5107en_US
dc.identifier.urihttp://hdl.handle.net/10397/116641-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectMagnetic shape memory alloysen_US
dc.subjectMulticaloric effecten_US
dc.subjectNi-Mn-Sn-Cu-B alloyen_US
dc.subjectSolid-state refrigerationen_US
dc.titleBroad refrigeration temperature window associated with multicaloric effects in Ni-Mn-Sn-Cu-B alloysen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume321en_US
dc.identifier.doi10.1016/j.mseb.2025.118462en_US
dcterms.abstractNi-Mn-Sn-based magnetic shape memory alloys (MSMAs) exhibit multifunctional properties such as elastocaloric effect (eCE) and magnetocaloric effect (MCE). The (Ni<inf>47</inf>Mn<inf>38</inf>Sn<inf>12</inf>Cu<inf>3</inf>)<inf>99.4</inf>B<inf>0.6</inf> alloy with the magnetic entropy change (ΔS<inf>m</inf>) of 21.2 J/kg·K at near-room-temperature is reported, under a magnetic field of 5 T. Remarkably, a large reversible eCE is achieved, with a directly measured adiabatic temperature change (ΔT<inf>ad</inf>) reaching up to 10.3 K. Throughout 200 loading–unloading cycles, the eCE shows excellent cyclic stability with no discernible decline. Moreover, the multicaloric effects resulting from the simultaneously applied uniaxial stress and magnetic field in the “blank region” between the magnetocaloric and elastocaloric operating temperature regions are analyzed and experimentally verified. Under the combination of MCE and eCE, the working temperature window could be largely broadened and cover the temperature range of 260 K to 336 K. Hydrostatic pressure coupled with a magnetic field increases the refrigeration capacity by 22%. The design of refrigeration materials with reversible large caloric effects, considerable cycle stability, and a broad refrigeration temperature range may benefit from the findings of this work.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationMaterials science and engineering. B, Solid-state materials for advanced technology, Nov. 2025, v. 321, 118462en_US
dcterms.isPartOfMaterials science and engineering. B, Solid-state materials for advanced technologyen_US
dcterms.issued2025-11-
dc.identifier.scopus2-s2.0-105007644931-
dc.identifier.artn118462en_US
dc.description.validate202601 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000665/2025-11-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe authors greatly acknowledge the financial supports from the National Key R&D program of China (Grant Number 2022YFB3805701), National Natural Science Foundation of China (Grant Number 52371182 , 51701052 ) and Heilongjiang Provincial Natural Science Foundation of China (Grant Number YQ2024E014 ).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-11-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-11-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.