Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/116640
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Electrical and Electronic Engineering | - |
| dc.creator | Long, M | - |
| dc.creator | Wang, R | - |
| dc.creator | Chen, J | - |
| dc.creator | Chung, E | - |
| dc.creator | Oguchi, T | - |
| dc.date.accessioned | 2026-01-08T08:24:51Z | - |
| dc.date.available | 2026-01-08T08:24:51Z | - |
| dc.identifier.issn | 2168-0566 | - |
| dc.identifier.uri | http://hdl.handle.net/10397/116640 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Taylor & Francis | en_US |
| dc.subject | Arterial road | en_US |
| dc.subject | Multi-agent reinforcement learning | en_US |
| dc.subject | Traffic signal control | en_US |
| dc.subject | Transit signal priority | en_US |
| dc.title | MARL-based cooperative transit signal priority for the arterial road to reduce schedule delay | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.volume | 13 | - |
| dc.identifier.issue | 1 | - |
| dc.identifier.doi | 10.1080/21680566.2025.2564703 | - |
| dcterms.abstract | Transit signal priority (TSP) is an effective strategy to reduce transit delays and improve intersection efficiency. This paper introduces a Cooperative TSP strategy of Variable phase (CTSPV) using multi-agent reinforcement learning (MARL) to minimize transit schedule delays on arterial roads. The agents adjust phase sequences and durations based on real-time traffic, balancing transit and non-transit vehicle needs, resolving conflicting bus requests, and ensuring agent cooperation. Invalid action masking ensures compliance with green time and phase-skipping rules. Simulation results show CTSPV reduces person delay, queue lengths, and lateness by 8.7%, 31.6%, and 17.0%, respectively, compared to fixed-time signals. Testing different green time constraints highlights the importance of proper restrictions for efficient learning. Analysis of CTSPV's signal timing reveals agents prioritize phases with high traffic demand and bus priority, skipping phases with lower demand. Evaluation results of generalized rule-based strategies based on those RL-derived patterns demonstrate the good performance of RL-learned knowledge. | - |
| dcterms.accessRights | embargoed access | en_US |
| dcterms.bibliographicCitation | Transportmetrica. B, Transport dynamics, 2025, v. 13, no. 1, 2564703 | - |
| dcterms.isPartOf | Transportmetrica. B, Transport dynamics | - |
| dcterms.issued | 2025 | - |
| dc.identifier.scopus | 2-s2.0-105018775843 | - |
| dc.identifier.eissn | 2168-0582 | - |
| dc.identifier.artn | 2564703 | - |
| dc.description.validate | 202601 bcjz | - |
| dc.description.oa | Not applicable | en_US |
| dc.identifier.SubFormID | G000664/2025-11 | en_US |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | This work was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission under [grant number KJQN202500504], the Foundation of Chongqing Normal University under [grant numbers 24XWB040 and 25XLB001], the General Program of Chongqing Natural Science Foundation under [grant CSTB2025NSCQ-GPX1008], and the Mainland-Hong Kong Joint Funding Scheme under [grant MHP/038/23]. | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.date.embargo | 2026-10-08 | en_US |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



