Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116633
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.contributorResearch Centre for Resources Engineering towards Carbon Neutralityen_US
dc.creatorHe, Jen_US
dc.creatorLong, Gen_US
dc.creatorJiang, Yen_US
dc.creatorQin, Qen_US
dc.creatorTang, Cen_US
dc.creatorTao, Yen_US
dc.creatorShen, Pen_US
dc.creatorPoon, CSen_US
dc.date.accessioned2026-01-08T01:40:02Z-
dc.date.available2026-01-08T01:40:02Z-
dc.identifier.issn0008-8846en_US
dc.identifier.urihttp://hdl.handle.net/10397/116633-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectCarbonationen_US
dc.subjectKineticsen_US
dc.subjectMicrostructural evolutionen_US
dc.subjectPolycarboxylate ether (PCE)en_US
dc.subjectPortland cementen_US
dc.titleCarbonation behavior of Portland cement incorporating polycarboxylate ether superplasticizer : towards carbonation kinetics, microstructural evolution and mechanical propertiesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume199en_US
dc.identifier.doi10.1016/j.cemconres.2025.108061en_US
dcterms.abstractPolycarboxylate ether (PCE) superplasticizers are crucial in modern concrete, yet their compatibility with carbonation curing, a promising CO<inf>2</inf> sequestration method, remains insufficiently understood. This study systematically examined carbonation behavior of Portland cement (PC) incorporating PCE by analyzing its phase assemblage, microstructure, carbonation heat, solution chemistry and mechanical properties. Results indicated that PCE significantly reduced the carbonation rate. The peak rate of carbonation heat in pure PC reached 0.57 W/g, while the addition of 2.0 % PCE reduced this value by 43.9 %. This reduction was attributed to the adsorption and complexation effects of PCE, the immobilization of CaCO<inf>3</inf> clusters within polymer network, as well as a rapid decrease in solution pH. Furthermore, the aggressive carbonation kinetics amplified the detrimental impact of PCE on microstructural development. This inhibited carbonation at particle boundaries and weakened interparticle bonding, thereby leading to a decline in mechanical performance. These findings offer fundamental insights into the compatibility and limitations of using PCE in combination with carbonation technologies in concrete.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationCement and concrete research, Jan. 2026, v. 199, 108061en_US
dcterms.isPartOfCement and concrete researchen_US
dcterms.issued2026-01-
dc.identifier.scopus2-s2.0-105018047187-
dc.identifier.eissn1873-3948en_US
dc.identifier.artn108061en_US
dc.description.validate202601 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000658/2025-11-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe authors would like to appreciate the financial support provided by the National Natural Science Foundation of China (No. 52308282) and the Sun Hung Kai Properties (SHKP) and the Hong Kong Polytechnic University Collaboration Project.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2028-01-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2028-01-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.