Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116587
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorYin, K-
dc.creatorShen, P-
dc.creatorZhang, L-
dc.creatorCai, Y-
dc.creatorXuan, D-
dc.creatorPoon, CS-
dc.date.accessioned2026-01-06T02:08:56Z-
dc.date.available2026-01-06T02:08:56Z-
dc.identifier.isbn -
dc.identifier.issn0958-9465-
dc.identifier.urihttp://hdl.handle.net/10397/116587-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectCarbonationen_US
dc.subjectCementitious materialsen_US
dc.subjectMarine geotechnicsen_US
dc.subjectOffshore deep cement mixingen_US
dc.subjectSeawateren_US
dc.titleCarbonized seawater cement slurries for offshore deep cement mixing : carbonation mechanism, strength enhancement and microstructure evolutionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage -
dc.identifier.epage -
dc.identifier.volume154-
dc.identifier.issue -
dc.identifier.doi10.1016/j.cemconcomp.2024.105788-
dcterms.abstractSeawater cement slurry (SCS) is a commonly used binder in offshore deep cement mixing (DCM) construction. Seawater cement slurries are usually prepared before they are grouted into the seabed and mixed with marine clay. The aim of this study is to explore the feasibility of applying carbonation technology to fabricate SCS suitable for offshore DCM while achieving carbon sequestration and obtaining better mechanical properties for stabilised marine sediments. This study demonstrated that after appropriate carbonation, carbonized SCS can be used in DCM to replace conventional SCS. Short-term carbonation promotes cement dissolution and hydration rates under seawater conditions rich in magnesium, calcium, and other inorganic ions. The carbonates include calcite, vaterite and amorphous carbonates, which provide additional nucleation sites for the hydration of SCS, resulting in an increment for amorphous CS(A)H gel with a dense pore structure and binding interaction with soil particles. After carbonation with 20 % CO2 for 5 min (0.5 wt% of cement), the UCS and secant modulus of cement-soil mixtures by 15.7 % and 111 % at the age of 1 day, and by 6.82 % and 10 % at the age of 28 days when treating marine clay with 80 % moisture content at a dosage of 260 kg/m3.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationCement and concrete composites, Nov. 2024, v. 154, 105788-
dcterms.isPartOfCement and concrete composites-
dcterms.issued2024-11-
dc.identifier.scopus2-s2.0-85205577593-
dc.identifier.pmid -
dc.identifier.eissn1873-393X-
dc.identifier.artn105788-
dc.description.validate202601 bcch-
dc.identifier.FolderNumbera4243ben_US
dc.identifier.SubFormID52401en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was financially supported by the Research Grants Council of the Hong Kong SAR Government (Project No. T22-502/18-R), the Research Center for Resources Engineering towards Carbon Neutrality (RCRE), and The Hong Kong Polytechnic University.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-11-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-11-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.