Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116562
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.contributorResearch Centre for Resources Engineering towards Carbon Neutralityen_US
dc.creatorQin, Qen_US
dc.creatorSu, Ben_US
dc.creatorMa, Zen_US
dc.creatorSun, Ren_US
dc.creatorShen, Pen_US
dc.creatorLi, Jen_US
dc.creatorPoon, CSen_US
dc.date.accessioned2026-01-05T06:39:27Z-
dc.date.available2026-01-05T06:39:27Z-
dc.identifier.issn0958-9465en_US
dc.identifier.urihttp://hdl.handle.net/10397/116562-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectCarbonation-hydration curingen_US
dc.subjectCarbonation-hydration equilibriumen_US
dc.subjectDamage characterizationen_US
dc.subjectMechanical propertiesen_US
dc.titleInvestigation of mechanical properties and damage characterization of cement pastes prepared by coupled carbonation-hydration curingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume160en_US
dc.identifier.doi10.1016/j.cemconcomp.2025.106049en_US
dcterms.abstractTo achieve carbon reduction, a coupled carbonation-hydration curing approach has been developed. This study employs the acoustic emission (AE) technique to analyze the mechanical properties and damage characterization of cement paste under this curing method. Microscopic techniques clarify the evolution of products, microstructures and micromechanical parameters, highlighting their impact on mechanical behavior. Results indicate that the carbonation-hydration equilibrium is achieved when the ratio of CaCO<inf>3</inf> to amorphous content is less than 2. In this system, C-S-H gels are predominantly formed, while the CaCO<inf>3</inf> content remains minimal. At the balance system, the compressive strength increases by 4.16 %–16.25 %, while the pore volume in the range of 1–200 nm decreases by 13.19 %–19.54 % compared to standard curing. Conversely, the ratio greater than 2 results in over-carbonation, with CaCO<inf>3</inf> as the dominant product and few C-S-H gels. In the over-carbonation system, the compressive strength and pore volume in the range of 1–200 nm decrease by 13.21 %–34.62 % and 21.55 %–40.85 %, respectively, compared to standard curing. Under coupled carbonation-hydration curing, cement pastes exhibit significant stress instability, with damage primarily from tensile cracks in the balanced systems and mixed shear-tensile or tensile cracks in the over-carbonated systems.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationCement and concrete composites, July 2025, v. 160, 106049en_US
dcterms.isPartOfCement and concrete compositesen_US
dcterms.issued2025-07-
dc.identifier.scopus2-s2.0-105000403344-
dc.identifier.eissn1873-393Xen_US
dc.identifier.artn106049en_US
dc.description.validate202601 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000609/2025-11-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe authors extremely acknowledge the National Key Research and Development Program of China (2024YFB3714802), Sun Hung Kai Properties and the Hong Kong Polytechnic University Collaboration project, Global Cement and Concrete Association, and China Resources Power Holdings (Shenshan) Co. Ltd for financial support.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-07-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-07-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.