Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116551
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorZhang, P-
dc.creatorManzano, H-
dc.creatorKai, MF-
dc.creatorDai, JG-
dc.date.accessioned2026-01-05T03:58:38Z-
dc.date.available2026-01-05T03:58:38Z-
dc.identifier.issn0008-8846-
dc.identifier.urihttp://hdl.handle.net/10397/116551-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectConfined wateren_US
dc.subjectLayered C-S-Hen_US
dc.subjectPore width effecten_US
dc.subjectRelative humidityen_US
dc.subjectTemperature effecten_US
dc.titleBehaviors and influences of water confined within the C-S-H interlayer : a quenched solid density functional theory studyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage -
dc.identifier.epage -
dc.identifier.volume184-
dc.identifier.issue -
dc.identifier.doi10.1016/j.cemconres.2024.107600-
dcterms.abstractWater confined within cement paste significantly influences the material's physical and chemical behaviors. Using quenched solid density functional theory (QSDFT), we investigate the complex behaviors of water confined within C-S-H interlayers. Confined water exists in forms of double layers (0–0.29 nm pores), three layers (0.32–0.59 nm pores), and multiple layers (≥0.65 nm pores). The adsorption isotherms reveal distinct adsorption behaviors depending on the pore size. For pores smaller than 0.59 nm, adsorption occurs as monolayer water adsorption and phase transition. In contrast, larger pores exhibit three stages: monolayer adsorption, multilayer adsorption, and phase transition. The pore pressure is positive for smaller pores (≤0.03 nm) and negative for larger pores; however, after the phase transition, the negative pressure is released with increasing relative humidity (RH). Additionally, temperature increase reduces the adsorption capacity, disrupts the water ordering, shortens the phase transition period, and affects the saturated pore pressure.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationCement and concrete research, Oct. 2024, v. 184, 107600-
dcterms.isPartOfCement and concrete research-
dcterms.issued2024-10-
dc.identifier.scopus2-s2.0-85198007067-
dc.identifier.pmid -
dc.identifier.eissn1873-3948-
dc.identifier.artn107600-
dc.description.validate202512 bcch-
dc.identifier.FolderNumbera4237den_US
dc.identifier.SubFormID52390en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis research was supported by Guangdong Province R&D Plan for Key Areas (Project code: 2019B111107002), the Hong Kong Research Grants Council – Theme-based Research Scheme (Project code: T22-502/18-R), City University of Hong Kong Startup Funding "Advanced Functional Construction Materials (AFCM) for Sustainable Built Environment" (Project code: 9380165), and The Hong Kong Polytechnic University through the Post-doctoral Fellowship (Project code: 1-W21R) and the Research Institute for Sustainable Urban Development (No. 1-BBWE).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-10-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-10-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.