Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116476
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.contributorDepartment of Applied Physics-
dc.contributorResearch Institute for Smart Energy-
dc.creatorLin, H-
dc.creatorZhan, Z-
dc.creatorZeng, H-
dc.creatorLi, R-
dc.creatorYi, Y-
dc.creatorChen, F-
dc.creatorCai, S-
dc.creatorZhu, Y-
dc.creatorCheung, CF-
dc.creatorXu, ZL-
dc.date.accessioned2025-12-31T07:26:18Z-
dc.date.available2025-12-31T07:26:18Z-
dc.identifier.issn0935-9648-
dc.identifier.urihttp://hdl.handle.net/10397/116476-
dc.language.isoenen_US
dc.publisherWiley-VCHen_US
dc.subjectCa metal anodesen_US
dc.subjectElectrolyte solutionsen_US
dc.subjectMultivalent ion batteriesen_US
dc.subjectSolid-state interphaseen_US
dc.titleUltrastable calcium metal anodes enabled by a strongly coordinated electrolyte derived bilayer solid electrolyte interphaseen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume37-
dc.identifier.issue48-
dc.identifier.doi10.1002/adma.202510711-
dcterms.abstractCalcium (Ca) metal battery is a promising alternative to current lithium battery chemistry due to the high crustal abundance of Ca element and potentially dendrite-free cycling of high-capacity Ca metal anodes. However, reversible Ca metal stripping and plating have been hindered by the lack of effective electrolytes and the formation of obstructive solid electrolyte interphase (SEI) layers. Here a strongly coordinated electrolyte system by incorporating LiB(hfip)₄ into Ca[B(hfip)₄]₂/glyme solutions is introduced. The highly coordinated glyme molecules and B(hfip)₄− anions are ready to decompose into organic rich compounds and CaH₂, CaB₂O₄ nanocrystals in the SEI layers on Ca metal surface. Transmission electron microscopy observations reveal that these ionically conductive inorganic particles are embedded beneath the organic-rich outer layer, thus forming a bilayer SEI configuration. This unique structure facilitates efficient Ca-ion transfer while preventing further electrolyte decomposition. Effectiveness of this electrolyte is evidenced by the ultrastable Ca//Ca symmetrical cells (over 1450 h with low potentials of <0.5 V vs. Ca/Ca²⁺ at a high current density of 2 mA cm⁻²) and the high-energy Ca//polyaniline full cells (energy densities of above 200 Wh kg⁻¹ over 200 cycles), which set new benchmarks in the field of room-temperature Ca metal batteries.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAdvanced materials, 3 Dec. 2025, v. 37, no. 48, e10711-
dcterms.isPartOfAdvanced materials-
dcterms.issued2025-12-03-
dc.identifier.scopus2-s2.0-105018494015-
dc.identifier.eissn1521-4095-
dc.identifier.artne10711-
dc.description.validate202512 bcjz-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000615/2025-11en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work described in this paper was fully supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU15305022, PolyU15304723), the Shenzhen Municipal Science and Technology Innovation Commission (Project No. JCYJ20220531091003008), and the Research Committee of the Hong Kong Polytechnic University (Project No. G-UARH, 1-BBR0, 4-ZZSE, RK59), the National R&D Program through the National Research Foundation of Korea (Project No. RS-2024-00408156). The authors acknowledge the OEMS characterization assistance from Ruquan Ye's group at City University of Hong Kong.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-12-03en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-12-03
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.