Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116474
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorSun, Pen_US
dc.creatorLiu, Yen_US
dc.creatorZhang, Len_US
dc.creatorHuang, Xen_US
dc.creatorNakamura, Yen_US
dc.date.accessioned2025-12-31T06:14:09Z-
dc.date.available2025-12-31T06:14:09Z-
dc.identifier.issn2451-9049en_US
dc.identifier.urihttp://hdl.handle.net/10397/116474-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectBattery thermal runawayen_US
dc.subjectBubblingen_US
dc.subjectFire safetyen_US
dc.subjectPhase change material (PCM)en_US
dc.subjectWax boilingen_US
dc.titleMultiphase modelling of bubbling in phase change material for battery thermal safety managementen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume67en_US
dc.identifier.doi10.1016/j.tsep.2025.104187en_US
dcterms.abstractThe thermal runaway and fire hazards of lithium-ion batteries remain critical safety concerns, so battery thermal management systems with phase change material (PCM) have been widely applied. Commonly used organic PCMs like paraffin wax are combustible, which can be ignited during battery thermal runaway and fire. However, the ignition risks of combustible PCMs under battery abused conditions have not been well simulated and discussed. This work simulates the mass loss of paraffin wax under the specific boundary temperatures with detailed bubbling phenomenon. First, the model adopts the Volume of Fluid (VOF) method to simulate the time-dependent evaporation and bubbling processes of the liquid paraffin wax when it is exposed to the hot boundary up to 550 °C. As the boundary temperature increases from 400 °C to 500 °C, the modelled peak mass flux of paraffin wax increases three folds, which agrees with the trend of hot-plate experiments. Then, the phase-change and bubbling of wax layer attached to a thermal-runaway battery are explored computationally. For battery SOC values higher than 50%, the chance of igniting wax during thermal runaway is high. The probability of ignition changes with the PCM thickness and boiling point, which are critical parameters for safe battery thermal management design. This work establishes a valuable computational framework to quantify ignition risks of organic PCM in battery thermal runaway.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationThermal science and engineering progress, Nov. 2025, v. 67, 104187en_US
dcterms.isPartOfThermal science and engineering progressen_US
dcterms.issued2025-11-
dc.identifier.scopus2-s2.0-105018574487-
dc.identifier.artn104187en_US
dc.description.validate202512 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000608/2025-11-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe work is funded by the Key-Area Research and Development Program of Guangdong Province (2023B0909060004). The authors thanks for the valuable information provided by China Energy Storage Alliance (CNESA).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-11-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-11-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.