Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116468
DC FieldValueLanguage
dc.contributorSchool of Fashion and Textiles-
dc.contributorIndustrial Centre-
dc.creatorLi, K-
dc.creatorLi, Z-
dc.creatorY, Wang, Yan-
dc.creatorHo, MMP-
dc.creatorHu, H-
dc.date.accessioned2025-12-31T03:20:52Z-
dc.date.available2025-12-31T03:20:52Z-
dc.identifier.issn0263-8223-
dc.identifier.urihttp://hdl.handle.net/10397/116468-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectAuxeticen_US
dc.subjectCompositesen_US
dc.subjectLow-velocity impacten_US
dc.subjectStretch-dominated structureen_US
dc.subjectNegative Poisson’s ratioen_US
dc.titleLow-velocity impact responses of a high-stiffness CFRP 3D hybrid auxetic lattice structure with superior energy absorptionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume372-
dc.identifier.doi10.1016/j.compstruct.2025.119604-
dcterms.abstractThis study investigates the low-velocity impact response and failure mechanisms of novel 3D hybrid auxetic lattice (HAL) structures fabricated from carbon fiber-reinforced polymer (CFRP) laminates. Three structural configurations (R0.4, R0.5, and R0.6), characterized by different strut thickness ratios (t₁/t₀), are tested under impact energy levels of 50, 70, and 90 J. Finite element (FE) models are developed using ABAQUS/Explicit, incorporating the Hashin failure criteria to simulate the deformation and damage evolution. Experimental results are compared with FE simulation in terms of impact force histories, energy absorption, force-displacements, auxetic characteristics, and failure morphologies. The results reveal that increasing the t₁/t₀ ratio improves maximum impact force, compressive modulus, and energy absorption capacity while diminishing auxetic effects. All configurations exhibit negative Poisson's ratio behavior under impact, driven by the rotation and buckling of oblique struts. Structural failure initiates at the top layer and propagates downward with increasing impact energy, evolving from localized strut breakage to complete structural collapse. These findings provide valuable insights for the design of lightweight, impact-resistant lattice structures for aerospace, automotive, and protective applications, where high energy absorption and stiffness are essential.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationComposite structures, 15 Nov. 2025, v. 372, 119604-
dcterms.isPartOfComposite structures-
dcterms.issued2025-11-15-
dc.identifier.scopus2-s2.0-105013884380-
dc.identifier.eissn1879-1085-
dc.identifier.artn119604-
dc.description.validate202512 bcjz-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000589/2025-09en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingTextThe work is funded by the Research Grants Council of the Hong Kong Special Administrative Region Government for the NSFC/RGC Joint Research Scheme (Grant Nos: N_PolyU516/20 and No.12061160461).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-11-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-11-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.