Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116465
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorLiu, Xen_US
dc.creatorHuang, Yen_US
dc.creatorShen, Cen_US
dc.creatorLu, Len_US
dc.date.accessioned2025-12-31T02:12:24Z-
dc.date.available2025-12-31T02:12:24Z-
dc.identifier.issn0360-5442en_US
dc.identifier.urihttp://hdl.handle.net/10397/116465-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectBuilding envelopeen_US
dc.subjectColor rendering indexen_US
dc.subjectCorrelated color temperatureen_US
dc.subjectPhotovoltaic double skin façadeen_US
dc.subjectSemi-transparent photovoltaic moduleen_US
dc.titleQuantitative assessment on the visual effects of photovoltaic double skin façade : towards a sustainable building prospecten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume317en_US
dc.identifier.doi10.1016/j.energy.2025.134642en_US
dcterms.abstractPhotovoltaic double-skin façade (PV-DSF) plays a pivotal role in sustainable building prospects, with extensive research focusing on energy efficiency. However, its visual effects, though critical for daylighting comfort, have frequently been overlooked. This paper addresses this gap by conducting preliminary experiments and spectrum-resolution modeling to quantitatively assess the visual effects of PV-DSF, offering a fresh perspective on this critical aspect. Preliminary experiments reveal that PV-DSF with 20 % CdTe module slightly outperforms that with 40 % CdTe module in general color rendering index (R<inf>a</inf>) by ∼0.8, while the laminated layer exerts negligible impact on visual effects. Spectrum-resolution modeling indicates that PV-DSF with CdTe modules achieves an optimal balance between energy efficiency and visual effects, with ∼80 % of correlated color temperature (CCT) and 100 % of R<inf>a</inf> falling within desirable ranges. Correlation analysis reveals that CCT is particularly sensitive to factors influencing diffuse radiation fraction, such as radiation and water vapor, with remarkable correlation coefficients of 0.71 and 0.54. Meanwhile, R<inf>a</inf> is primarily affected by the concentrations of colored atmospheric components (e.g., NO<inf>x</inf> and O₃), with typically lower correlation coefficients ranging from 0.2 to 0.4. These correlations also explain the seasonal variations of visual effects, with CCT peaking in summer and R<inf>a</inf> peaking in winter.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEnergy, 15 Feb. 2025, v. 317, 134642en_US
dcterms.isPartOfEnergyen_US
dcterms.issued2025-02-15-
dc.identifier.scopus2-s2.0-85216243485-
dc.identifier.eissn1873-6785en_US
dc.identifier.artn134642en_US
dc.description.validate202512 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000600/2025-12-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe authors gratefully acknowledge the funding support from the Hong Kong RGC General Research Fund (Project No. 15219323), and the Hong Kong Polytechnic University through Joint PhD Supervision Scheme with Chinese Mainland Universities (Project No. G-SB6P).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-02-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-02-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.