Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116447
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorYan, T-
dc.creatorShen, SL-
dc.creatorYin, ZY-
dc.creatorZhang, N-
dc.date.accessioned2025-12-30T03:56:10Z-
dc.date.available2025-12-30T03:56:10Z-
dc.identifier.issn0926-5805-
dc.identifier.urihttp://hdl.handle.net/10397/116447-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectBoreholesen_US
dc.subjectCross-sectionen_US
dc.subjectMachine learningen_US
dc.subjectShield tunnellingen_US
dc.subjectThree databasesen_US
dc.titleMulti-source data-driven prediction of geological cross-section during shield tunnellingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume181-
dc.identifier.doi10.1016/j.autcon.2025.106592-
dcterms.abstractThis paper proposes a multi-source data-driven framework to estimate the geological profile through incorporating three geological datasets: borehole data, inverse distance weighting (IDW)-enhanced data, and shield parameters related data (shield-enhanced data). IDW-enhanced database is constructed using IDW method, which can obtain the spatial feature of strata based on the spatial relationship between the target area and surrounding boreholes. Borehole data is enhanced by shield parameters to refine geological cross-section and establish shield-enhanced database. Four machine learning methods are employed to assess the effectiveness of the proposed framework. The cross-validation using true boreholes is also adopted to compare the performance of machine learning models. The best model using a support vector machine (SVM) is finally selected to predict the geological profile. The multi-source data-driven framework increases the accuracy of prediction of geological cross-section from 0.77 to 0.938. The proposed framework is successfully applied to the shield tunnelling project in Guangzhou, China.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAutomation in construction, Jan. 2026, v. 181, pt. A, 106592-
dcterms.isPartOfAutomation in construction-
dcterms.issued2026-01-
dc.identifier.scopus2-s2.0-105018913189-
dc.identifier.eissn1872-7891-
dc.identifier.artn106592-
dc.description.validate202512 bcel-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000641/2025-11en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis research is financially supported by “The Pearl River Talent Recruitment Program”, Guangdong Province (Grant No. 2019CX01G338), the Research Grants Council (RGC) of the Hong Kong Special Administrative Region Government (HKSARG) of China (Grant No. 15220423), Shenzhen Poxon Machinery Technology Co., Ltd. (Grant No. R-ZGCM).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2028-01-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2028-01-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.