Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116438
Title: Insights into the synergistic action of initial hydration and subsequent carbonation of Portland cement
Authors: He, J 
Zhao, Y 
Tao, Y 
Shen, P 
Poon, CS 
Issue Date: Mar-2025
Source: Cement and concrete composites, Mar. 2025, v. 157, 105924
Abstract: Pretreatment-induced initial hydration would significantly influence subsequent carbonation. However, the evolution of microstructure and performance resulting from the synergistic action of hydration and carbonation remains systematically unexplored. This study investigates carbonation kinetics, microstructure and micro/macro mechanical properties of carbonated cement pastes (CCPs) under the synergistic action of initial hydration and subsequent carbonation, while elucidating the underlying mechanisms. The results revealed that unhydrated cement exhibited a peak carbonation rate of 0.65 W/g, increasing by approximately 83 % when the cement underwent an 8 h of initial curing, demonstrating the enhancement in the carbonation reactivity due to initial hydration. However, the carbonation efficiency of CCPs increased initially and then decreased as initial hydration extended. This trend emerged because initial hydration enhanced carbonation reactivity, whereas excessive hydration concurrently obstructed CO<inf>2</inf> transport. Furthermore, optimal initial hydration was essential for the synergistic interaction between hydration and carbonation, resulting in reduced porosity and a more homogeneous microstructure, as well as improved mechanical properties. These findings underscore the need to carefully consider the synergistic action of initial hydration and subsequent carbonation when designing pretreatment protocols.
Keywords: Carbonation
Curing
Hydration
Pretreatment
Properties
Publisher: Pergamon Press
Journal: Cement and concrete composites 
ISSN: 0958-9465
EISSN: 1873-393X
DOI: 10.1016/j.cemconcomp.2025.105924
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 2027-03-31
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.