Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116408
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorGao, G-
dc.creatorLi, B-
dc.date.accessioned2025-12-23T04:43:42Z-
dc.date.available2025-12-23T04:43:42Z-
dc.identifier.issn0021-9991-
dc.identifier.urihttp://hdl.handle.net/10397/116408-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.subjectArea decreaseen_US
dc.subjectGeometric structureen_US
dc.subjectMean curvature flowen_US
dc.subjectParametric finite element methoden_US
dc.subjectSurface diffusionen_US
dc.subjectVolume conservationen_US
dc.titleGeometric-structure preserving methods for surface evolution in curvature flows with minimal deformation formulationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume524-
dc.identifier.doi10.1016/j.jcp.2025.113718-
dcterms.abstractIn this article, we design novel weak formulations and parametric finite element methods for computing surface evolution under mean curvature flow and surface diffusion while preserving essential geometric structures such as surface area decrease and volume conservation enclosed by the surface. The proposed methods incorporate tangential motion that minimizes deformation energy under the constraint of normal velocity, ensuring minimal mesh distortion from the initial surface. Additionally, they employ a global constant multiplier to preserve the geometric structures in mean curvature flow and surface diffusion. Specifically, for mean curvature flow, the proposed method preserves the decrease of surface area; for surface diffusion, it preserves both the decrease of surface area and the conservation of the volume enclosed by the surface. Extensive numerical examples are presented to illustrate the convergence of the proposed methods, their geometric-structure-preserving properties, and the improvement in mesh quality of the computed surfaces.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationJournal of computational physics, 1 Mar. 2025, v. 524, 113718-
dcterms.isPartOfJournal of computational physics-
dcterms.issued2025-03-01-
dc.identifier.scopus2-s2.0-85214584407-
dc.identifier.eissn1090-2716-
dc.identifier.artn113718-
dc.description.validate202512 bcch-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000537/2025-12en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was supported in part by the Research Grants Council of Hong Kong (Project No. PolyU/RFS2324-5S03) and an internal grant of The Hong Kong Polytechnic University (Project ID: P0048258).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-03-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-03-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.