Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116379
DC FieldValueLanguage
dc.contributorDepartment of Aeronautical and Aviation Engineering-
dc.creatorLi, Z-
dc.creatorLi, F-
dc.creatorLyu, M-
dc.date.accessioned2025-12-19T09:12:21Z-
dc.date.available2025-12-19T09:12:21Z-
dc.identifier.issn1044-7318-
dc.identifier.urihttp://hdl.handle.net/10397/116379-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.subjectAir traffic controlen_US
dc.subjectDetection failures recognitionen_US
dc.subjectEye trackingen_US
dc.subjectWarning detectionen_US
dc.subjectWarning frequencyen_US
dc.titleTracking the unseen and unaware : deciphering controllers’ detection failures to warnings through eye-tracking metricsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage11895-
dc.identifier.epage11914-
dc.identifier.volume41-
dc.identifier.issue19-
dc.identifier.doi10.1080/10447318.2024.2448877-
dcterms.abstractThe integration of digital towers in air traffic control (ATC) intensifies visual complexity of controllers, increasing the risk of detection failure (DF) to warnings and compromising airspace safety. The inherent variability in human situational awareness and behaviors further complicates the differentiation and recognition of various DFs. This study deciphers DF by categorizing it into types based on Endsley’s situation awareness theory, identifying specific causes and key indicators. A four-phase framework—DF classification, DF induction experiment, gaze dynamics analytics, and DF-type recognition—was applied to gaze data from 26 subjects. Results revealed distinct gaze patterns for non-perception, unaware perception, and aware perception of warnings, with continuous warnings weakening operators’ awareness but enhancing foresight of warning implications. A random forest model achieved 80% precision in DF-type recognition, offering empirical support for real-time DF recognition and targeted interventions to improve visual warning detection and human-computer interaction in aviation safety.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationInternational journal of human-computer interaction, 2025, v. 41, no. 19, p. 11895-11914-
dcterms.isPartOfInternational journal of human-computer interaction-
dcterms.issued2025-
dc.identifier.scopus2-s2.0-85214696743-
dc.identifier.eissn1532-7590-
dc.description.validate202512 bcjz-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000556/2025-12en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was supported by the Hong Kong Polytechnic University under Grant P0038827 and Grant P0038933.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-01-13en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-01-13
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.