Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116367
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.creatorYe, Jen_US
dc.creatorUddin, MNen_US
dc.creatorYu, Jen_US
dc.creatorXu, Ten_US
dc.creatorZhan, Yen_US
dc.creatorZhang, Den_US
dc.creatorWeng, Yen_US
dc.date.accessioned2025-12-19T03:19:49Z-
dc.date.available2025-12-19T03:19:49Z-
dc.identifier.issn0013-7944en_US
dc.identifier.urihttp://hdl.handle.net/10397/116367-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectFlexural strengthen_US
dc.subjectFracture toughnessen_US
dc.subjectGene expression programmingen_US
dc.subjectMachine learningen_US
dc.subjectSize effecten_US
dc.titleA data-driven approach to predicting multifactor-influenced flexural size effect and fracture behaviors of concreteen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume315en_US
dc.identifier.doi10.1016/j.engfracmech.2024.110794en_US
dcterms.abstractFlexural size effect, originating from the fracture characteristics of materials, is a common phenomenon in concrete. Conventionally, time-consuming and labor-intensive experiments are required to investigate the flexural size effect and fracture behaviors of concrete. To tackle the limitations, a data-driven approach was adopted to predict the multifactor-influenced flexural size effect and fracture behaviors of concrete by gene expression programming (GEP) due to its capability of addressing non-linear problems and developing empirical equations with multiple input variables. Results show that the GEP models can accurately predict nominal flexural strength (R2, 0.890) and fracture toughness (R2, 0.946). Parametric analysis reveals that the compressive strength and tensile strain capacity positively impact the nominal flexural strength and fracture toughness of concrete. Based on the GEP model, a multifactor-influenced size effect law (SEL) is proposed to predict the nominal flexural strength by incorporating both material and geometric parameters, removing the need for extensive experimental investigations. The findings provide generalized models to predict the nominal flexural strength and fracture toughness of various materials at different sizes.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEngineering fracture mechanics, 21 Feb. 2025, v. 315, 110794en_US
dcterms.isPartOfEngineering fracture mechanicsen_US
dcterms.issued2025-02-21-
dc.identifier.scopus2-s2.0-85213881664-
dc.identifier.eissn1873-7315en_US
dc.identifier.artn110794en_US
dc.description.validate202512 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000505/2025-12-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe author would like to gratefully acknowledge the Project No. 52308284 supported by National Natural Science Foundation of China , project supported by Guangdong Basic and Applied Basic Research Foundation (No. 2024A1515011870 ), and The Hong Kong Polytechnic University ( P0038966 and P0046543 ).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-02-21en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-02-21
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.