Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116362
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.creatorHong, Men_US
dc.creatorNg, Wen_US
dc.creatorZhang, CJen_US
dc.creatorSong, Yen_US
dc.creatorJiang, Den_US
dc.date.accessioned2025-12-19T02:42:05Z-
dc.date.available2025-12-19T02:42:05Z-
dc.identifier.isbn979-8-89176-332-6en_US
dc.identifier.urihttp://hdl.handle.net/10397/116362-
dc.description2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025), Suzhou, China, November 4th-9th, 2025en_US
dc.language.isoenen_US
dc.publisherAssociation for Computational Linguistics (ACL)en_US
dc.rights©2025 Association for Computational Linguisticsen_US
dc.rightsMaterials published in or after 2016 are licensed on a Creative Commons Attribution 4.0 International License. (https://creativecommons.org/licenses/by/4.0/)en_US
dc.rightsThe following publication Hong, M., Ng, W., Zhang, C. J., Song, Y., & Jiang, D. (2025, November). Dial-In LLM: Human-Aligned LLM-in-the-loop Intent Clustering for Customer Service Dialogues. In C. Christodoulopoulos, T. Chakraborty, C. Rose, & V. Peng, Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, Suzhou, China is available at https://doi.org/10.18653/v1/2025.emnlp-main.300.en_US
dc.titleDial-In LLM : human-aligned LLM-in-the-loop intent clustering for customer service dialoguesen_US
dc.typeConference Paperen_US
dc.identifier.spage5896en_US
dc.identifier.epage5911en_US
dc.identifier.doi10.18653/v1/2025.emnlp-main.300en_US
dcterms.abstractDiscovering customer intentions is crucial for automated service agents, yet existing intent clustering methods often fall short due to their reliance on embedding distance metrics and neglect of underlying semantic structures. To address these limitations, we propose an **LLM-in-the-loop (LLM-ITL)** intent clustering framework, integrating the language understanding capabilities of LLMs into conventional clustering algorithms. Specifically, this paper (1) examines the effectiveness of fine-tuned LLMs in semantic coherence evaluation and intent cluster naming, achieving over 95% accuracy aligned with human judgments; (2) designs an LLM-ITL framework that facilitates the iterative discovery of coherent intent clusters and the optimal number of clusters; and (3) introduces context-aware techniques tailored for customer service dialogue. Since existing English benchmarks lack sufficient semantic diversity and intent coverage, we further present a comprehensive Chinese dialogue intent dataset comprising over 100k real customer service calls with 1,507 human-annotated clusters. The proposed approaches significantly outperform LLM-guided baselines, achieving notable improvements in clustering quality, cost efficiency, and downstream applications. Combined with several best practices, our findings highlight the prominence of LLM-in-the-loop techniques for scalable dialogue data mining.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing Suzhou, China, p. 5896-5911. Kerrville, TX: Association for Computational Linguistics (ACL), 2025en_US
dcterms.issued2025-
dc.relation.ispartofbookProceedings of the 2025 Conference on Empirical Methods in Natural Language Processing Suzhou, Chinaen_US
dc.relation.conferenceEmpirical Methods in Natural Language Processing [EMNLP]en_US
dc.publisher.placeKerrville, TXen_US
dc.description.validate202512 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera4223-
dc.identifier.SubFormID52297-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
2025.emnlp-main.300.pdf1.07 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.