Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116361
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.creatorHong, Men_US
dc.creatorZhang, CJen_US
dc.creatorJiang, Den_US
dc.creatorHe, Yen_US
dc.date.accessioned2025-12-19T02:41:47Z-
dc.date.available2025-12-19T02:41:47Z-
dc.identifier.isbn979-8-89176-333-3en_US
dc.identifier.urihttp://hdl.handle.net/10397/116361-
dc.description2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025), Suzhou, China, November 4th-9th, 2025en_US
dc.language.isoenen_US
dc.publisherAssociation for Computational Linguistics (ACL)en_US
dc.rights©2025 Association for Computational Linguisticsen_US
dc.rightsMaterials published in or after 2016 are licensed on a Creative Commons Attribution 4.0 International License. (https://creativecommons.org/licenses/by/4.0/)en_US
dc.rightsThe following publication Hong, M., Zhang, C. J., Jiang, D., & He, Y. (2025, November). Augmenting Compliance-Guaranteed Customer Service Chatbots: Context-Aware Knowledge Expansion with Large Language Models. In S. Potdar, L. Rojas-Barahona, & S. Montella, Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, Suzhou (China) is available at https://doi.org/10.18653/v1/2025.emnlp-industry.51.en_US
dc.titleAugmenting compliance-guaranteed customer service chatbots : context-aware knowledge expansion with large language modelsen_US
dc.typeConference Paperen_US
dc.identifier.spage753en_US
dc.identifier.epage765en_US
dc.identifier.doi10.18653/v1/2025.emnlp-industry.51en_US
dcterms.abstractRetrieval-based chatbots leverage human-verified Q&A knowledge to deliver accurate, verifiable responses, making them ideal for customer-centric applications where compliance with regulatory and operational standards is critical. To effectively handle diverse customer inquiries, augmenting the knowledge base with “similar questions” that retain semantic meaning while incorporating varied expressions is a cost-effective strategy. In this paper, we introduce the Similar Question Generation (SQG) task for LLM training and inference, proposing context-aware approaches to enable comprehensive semantic exploration and enhanced alignment with source question-answer relationships. We formulate optimization techniques for constructing in-context prompts and selecting an optimal subset of similar questions to expand chatbot knowledge under budget constraints. Both quantitative and human evaluations validate the effectiveness of these methods, achieving a 92% user satisfaction rate in a deployed chatbot system, reflecting an 18% improvement over the unaugmented baseline. These findings highlight the practical benefits of SQG and emphasize the potential of LLMs, not as direct chatbot interfaces, but in supporting non-generative systems for hallucination-free, compliance-guaranteed applications.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, p. 753-765. Kerrville, TX: Association for Computational Linguistics, 2025en_US
dcterms.issued2025-
dc.relation.ispartofbookProceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Tracken_US
dc.relation.conferenceEmpirical Methods in Natural Language Processing [EMNLP]en_US
dc.publisher.placeKerrville, TXen_US
dc.description.validate202512 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera4223-
dc.identifier.SubFormID52298-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
2025.emnlp-industry.51.pdf1.19 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.