Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116306
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorLuo, YK-
dc.creatorZhang, JX-
dc.creatorDong, Y-
dc.creatorZhou, L-
dc.creatorFrangopol, DM-
dc.date.accessioned2025-12-15T09:24:03Z-
dc.date.available2025-12-15T09:24:03Z-
dc.identifier.issn1573-2479-
dc.identifier.urihttp://hdl.handle.net/10397/116306-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.subjectCorrugation modelingen_US
dc.subjectLife cycle costen_US
dc.subjectLife cycle maintenanceen_US
dc.subjectPhysics-guided maintenanceen_US
dc.subjectRail corrugationen_US
dc.subjectStrategy optimisationen_US
dc.titlePhysics-guided life-cycle maintenance framework for rail corrugationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1080/15732479.2025.2527204-
dcterms.abstractRail corrugation, a significant source of noise and reduced ride comfort, is mitigated by costly regular grinding. Developing optimal, cost-effective maintenance strategies is challenging due to complex mechanisms and various influential factors. This research introduces a life cycle maintenance (LCM) framework integrating a physical corrugation analysis model with a multi-property effect function under budgetary and railway standard constraints. The framework combines maintenance strategies and economic factors into a multi-objective optimisation problem, solved via a genetic algorithm, to identify optimal solutions across various operational scenarios. It also quantifies the impact of train operation schedules, offering insights for future management decisions. A suburban rail system case study demonstrates the framework’s adaptability by examining three engineering scenarios. Simulation results show that the framework can boost standard compliance ratios and rail quality while reducing maintenance budgets by up to 40%, 48%, and 64%, respectively. The findings illustrate the framework’s capability to optimise rail corrugation maintenance and improve train operation management across practical scenarios.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationStructure and infrastructure engineering, Published online: 7 July 2025, Latest Articles, https://doi.org/10.1080/15732479.2025.2527204-
dcterms.isPartOfStructure and infrastructure engineering-
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105010201582-
dc.identifier.eissn1744-8980-
dc.description.validate202512 bcjz-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000464/2025-08en_US
dc.description.fundingSourceOtheren_US
dc.description.fundingTextThis work was supported in part by the National Natural Science Foundation of China under grant No. 52078448, and Innovations and Technology Commission of Hong Kong SAR Government to the Hong Kong Branch of Chinese National Rail Transit Electrification and Automation Engineering Technology Research Center (Grant No. K-BBY1).en_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo2026-07-07en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-07-07
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.