Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116294
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.contributorResearch Centre for Resources Engineering towards Carbon Neutralityen_US
dc.creatorGao, Sen_US
dc.creatorZhang, Sen_US
dc.creatorPoon, CSen_US
dc.date.accessioned2025-12-15T04:57:48Z-
dc.date.available2025-12-15T04:57:48Z-
dc.identifier.urihttp://hdl.handle.net/10397/116294-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectClimate changeen_US
dc.subjectLeachingen_US
dc.subjectLife cycle assessmenten_US
dc.subjectIncineration bottom ashen_US
dc.subjectPermeable blocksen_US
dc.subjectUSEtox modelen_US
dc.titleEnvironmental toxicity of IBA-derived permeable blocks under climate changeen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage13207en_US
dc.identifier.epage13218en_US
dc.identifier.volume13en_US
dc.identifier.issue33en_US
dc.identifier.doi10.1021/acssuschemeng.5c02688en_US
dcterms.abstractReusing incineration bottom ash (IBA) in permeable blocks offers the potential for sustainable construction and urban stormwater management. This study evaluates the long-term leaching behavior of IBA-derived blocks under future climate conditions in Hong Kong, focusing on temperature projections of up to 35 °C and total precipitation reaching 600 mm annually over the next 15 years. Using the USEtox model, the study modifies the exposure factor to reflect changes in leaching dynamics. The findings show that under high temperatures (35 °C) and high L/S ratios, leaching rates of heavy metals, particularly chromium (Cr), exceed SPLP predictions, especially for blocks with higher IBA substitution ratios. The highest risk is associated with 100% IBA-derived blocks, where Cr mobility increases under warmer and wetter conditions. The study emphasizes the need to incorporate climate change impacts into life cycle assessment (LCA) of waste-derived construction materials. Recommendations include reducing the IBA substitution ratio in hot, humid regions to minimize risks. In contrast, higher IBA ratios may be suitable for cooler, drier areas. Long-term monitoring and risk assessments are critical for managing environmental and health impacts. This research establishes a framework linking climate projections with environmental risk assessment, supporting safer and more sustainable material applications.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationACS sustainable chemistry & engineering, 25 Aug. 2025, v. 13, no. 33, p. 13207-13218en_US
dcterms.isPartOfACS sustainable chemistry & engineeringen_US
dcterms.issued2025-08-25-
dc.identifier.scopus2-s2.0-105014295140-
dc.identifier.eissn2168-0485en_US
dc.description.validate202512 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000475/2025-09-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe authors gratefully acknowledge the financial support from China Resources Corporation, the Innovation Technology Commission and The Hong Kong Polytechnic University which made this research possible. Sincere acknowledgment is extended to Dr. Pir Mohammad (Research Assistant Professor, LSGI, PolyU) for his provision of the climate change data.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-08-10en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-08-10
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.