Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116292
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorWang, Den_US
dc.creatorFan, Jen_US
dc.creatorHe, Jen_US
dc.creatorWang, Zen_US
dc.creatorNie, Den_US
dc.creatorZhu, Jen_US
dc.creatorBatool, HSen_US
dc.creatorYang, Men_US
dc.creatorDeng, Qen_US
dc.creatorWee, ATSen_US
dc.date.accessioned2025-12-15T04:12:48Z-
dc.date.available2025-12-15T04:12:48Z-
dc.identifier.issn1936-0851en_US
dc.identifier.urihttp://hdl.handle.net/10397/116292-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectCovalent organic frameworken_US
dc.subjectDFT calculationen_US
dc.subjectGuest-host interactionen_US
dc.subjectLT-STMen_US
dc.subjectMolecular adsorptionen_US
dc.titleImaging of guest molecule adsorption onto 2D covalent organic frameworks by scanning tunneling microscopyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage22133en_US
dc.identifier.epage22140en_US
dc.identifier.volume19en_US
dc.identifier.issue24en_US
dc.identifier.doi10.1021/acsnano.5c02862en_US
dcterms.abstractPorous materials play an important role in molecular adsorption and separation. However, understanding the mechanisms of molecular adsorption and separation into the pores remains a challenge. Herein, the adsorption of 1,3,5-tris(4-iodophenyl)benzene (TIPB) molecules onto a two-dimensional (2D) covalent organic framework (COF) monolayer is studied by low-temperature scanning tunneling microscopy (LT-STM) and density functional theory calculations. The COF monolayers are synthesized via the on-surface Ullmann reaction. The COF films have six types of porous morphology with different pore sizes, namely, tetragon, pentagon, hexagon, heptagon, octagon, and nonagon lattices. The adsorption behavior of guest TIPB molecules into the host COF’s pores is in situ probed by high-resolution LT-STM. Our results reveal that the in-plane adsorption of TIPB molecules is pore-size-dependent and influenced by the interaction with the substrate, with tetragon and pentagon lattices showing no molecule adsorption due to their small pore size. Hexagon and heptagon lattices can adsorb one TIPB molecule through I–H bonding, while octagon and nonagon lattices are able to accommodate two TIPB molecules through both I–H and I–I bonding. The substrate affects the in-plane adsorption. After annealing, the adsorbed molecules can form new covalent bonds with the COF lattice, resulting in the pore-size-dependent grafting of TIPB molecules at the COF branched chains. These findings help to understand the pore-size-dependent adsorption mechanisms and the covalent grafting of guest molecules onto 2D COFs.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationACS nano, 24 June 2025, v. 19, no. 24, p. 22133-22140en_US
dcterms.isPartOfACS nanoen_US
dcterms.issued2025-06-24-
dc.identifier.scopus2-s2.0-105006627261-
dc.identifier.pmid40407777-
dc.identifier.eissn1936-086Xen_US
dc.description.validate202512 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000403/2025-11-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextD.W. acknowledges the financial support from the National Natural Science Foundation of China under Grant No. 62304138, from the Guangdong Major Project of Basic and Applied Basic Research under Grant No. 2023B0303000008, from the Shenzhen Science and Technology Program (ZDSYS20220527171402005, No. 827-000920, and No. 868-000001032124), from the Shenzhen University 2035 pursues excellence Research plan (No. 2022T002), and from the Shenzhen Strategic Emerging Industry Support Plan (Grant No. F-2023-Z99-509043). A.T.S.W. and D.W. acknowledge the financial support from the National Research Foundation Singapore NRF CRP26-2021RS-0001.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-05-23en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-05-23
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

2
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.