Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116284
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.creatorHasan, F-
dc.creatorLiu, X-
dc.date.accessioned2025-12-12T02:13:41Z-
dc.date.available2025-12-12T02:13:41Z-
dc.identifier.issn1364-8152-
dc.identifier.urihttp://hdl.handle.net/10397/116284-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectDeep learningen_US
dc.subjectGenerative adversarial networken_US
dc.subjectSustainable urban planningen_US
dc.subjectTransformer networksen_US
dc.subjectUrban expansion modelingen_US
dc.titleAdvancing urban expansion modeling with a hybrid TRANSGAN deep learning approachen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume194-
dc.identifier.doi10.1016/j.envsoft.2025.106693-
dcterms.abstractUrban expansion modeling is pivotal for sustainable urban planning, yet conventional approaches often fail to capture intricate spatial and temporal dynamics. In this study, we present TRANSGAN, the first framework combining Transformer networks and Generative Adversarial Networks (GANs) for urban expansion simulation. By harnessing the spatial learning strengths of Transformers alongside the generative capabilities of GANs, TRANSGAN significantly outperforms traditional models, as evidenced by enhanced predictive accuracy and spatial consistency. Trained on historical land use data in Hong Kong and incorporating key drivers, such as proximity to CBDs, road networks, and elevation, the model delivers highly realistic urban expansion forecasts for 2035 and 2045. Comparative analyses with Transformer, GAN, U-Net, and Random Forest models demonstrate that TRANSGAN achieves the highest F1 Score (0.9496), Precision (0.9396), FOM (0.8889), and Recall (0.9428). This robust, interpretable, and scalable approach not only advances urban expansion modeling but also provides critical insights for urban planners and policymakers.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEnvironmental modelling & software, Oct. 2025, v. 194, 106693-
dcterms.isPartOfEnvironmental modelling & software-
dcterms.issued2025-10-
dc.identifier.scopus2-s2.0-105017646158-
dc.identifier.eissn1873-6726-
dc.identifier.artn106693-
dc.description.validate202512 bcjz-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000412/2025-11en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextFinancial support from the NSFC General Program ( 42171455 ), the Hong Kong Polytechnic University, Hong Kong ( WZ43 ), and the RGC General Research Fund, Hong Kong ( 15204121 ) is gratefully acknowledged.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-10-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-10-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.