Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116282
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorChen, Wen_US
dc.creatorShen, Pen_US
dc.creatorQin, Qen_US
dc.creatorTao, Yen_US
dc.creatorPoon, CSen_US
dc.date.accessioned2025-12-11T07:31:37Z-
dc.date.available2025-12-11T07:31:37Z-
dc.identifier.issn0958-9465en_US
dc.identifier.urihttp://hdl.handle.net/10397/116282-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectAlkali-activated materialen_US
dc.subjectCO₂ emissionen_US
dc.subjectHydrationen_US
dc.subjectRecycled concrete finesen_US
dc.subjectStrengthen_US
dc.titleSynthesis of low-carbon alkali-activated materials using carbonated recycled concrete fines with sodium meta-aluminateen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume163en_US
dc.identifier.doi10.1016/j.cemconcomp.2025.106211en_US
dcterms.abstractThis paper reports the synthesis of a novel low-carbon alkali-activated material system to fully utilise the reaction potential of carbonated recycled concrete fines. The hydration mechanism and strength source of the alkali-activated carbonated recycled concrete fines (AACRCF) system are systematically investigated. The results indicate that the AACRCF paste can pose competent hardening properties comparable to OPC, with 28-day compressive strengths reaching up to 25 MPa and 90 MPa at W/S ratios of 0.5 and 0.2, respectively. The hydration of the AACRCF system typically exhibits characteristics of high kinetics and low reaction heat release, mainly including the carbo-aluminate reaction and alkali-activation reaction, which convert the calcium carbonate and silica-alumina gels in CRCF into monocarboaluminate and C-N-A-S-H gels. The strength of this system mainly comes from its crystalline phase rather than the gel phase. Overall, the utilisation of the AACRCF system can considerably reduce carbon emission, resulting in significant environmental benefits.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationCement and concrete composites, Oct. 2025, v. 163, 106211en_US
dcterms.isPartOfCement and concrete compositesen_US
dcterms.issued2025-10-
dc.identifier.scopus2-s2.0-105010074639-
dc.identifier.eissn1873-393Xen_US
dc.identifier.artn106211en_US
dc.description.validate202512 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000465/2025-08-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe authors wish to gratefully thank the financial support of the Innovation and Technology Fund. The equipment support from the University Research Facility on Chemical and Environmental Analysis (UCEA) at the Hong Kong Polytechnic University is also acknowledged.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-10-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-10-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.