Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116275
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.creatorHuang, Xen_US
dc.creatorBu, Yen_US
dc.creatorLiu, Jen_US
dc.creatorMeng, Men_US
dc.creatorZhang, Jen_US
dc.creatorZhuge, Cen_US
dc.date.accessioned2025-12-11T00:48:02Z-
dc.date.available2025-12-11T00:48:02Z-
dc.identifier.issn0967-070Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/116275-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectAdoption behavioren_US
dc.subjectImpact assessmenten_US
dc.subjectRide-hailingen_US
dc.subjectSpatial agent-based modelen_US
dc.titleA spatial agent-based approach to simulating the ride-hailing system and its environmental impactsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume174en_US
dc.identifier.doi10.1016/j.tranpol.2025.103848en_US
dcterms.abstractRide-hailing services could potentially optimize vehicle use and reduce emissions. To investigate the diffusion of ride-hailing services and its impacts at the individual level, we proposed a spatial agent-based model, which integrated the supply-demand dynamics, to simulate the behaviors of the service provider, drivers, and users in Shenzhen, China, from 2023 to 2038 in various future scenarios. The results of the baseline scenario (assuming the market would evolve as before from 2023 to 2038) show a 36 % increase in annual ride-hailing usage, a 24.63 % decrease in the average ride-hailing price, and a 73.16 % increase in drivers' compensation. Carbon emissions reduces by 33.13 % (given that ride-hailing services replace existing combined transportation modes). The what-if scenarios show that price and compensation affect the ride-hailing system in the early stages and further its carbon emission reduction potential. The results would be useful for policy making and optimization of a ride-haling system.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationTransport policy, Dec. 2025, v. 174, 103848en_US
dcterms.isPartOfTransport policyen_US
dcterms.issued2025-12-
dc.identifier.scopus2-s2.0-105017849479-
dc.identifier.eissn1879-310Xen_US
dc.identifier.artn103848en_US
dc.description.validate202512 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000451/2025-11-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextWe thank the Shenzhen Park of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone and this research has been supported by the \u201CTheories for Spatiotemporal Intelligence and Reliable Data Analysis\u201D (Project ID: HZQSWS-KCCYB-2024058 ), the European Research Council (ERC) for the iDODDLE project (grant #101003083 ), the Shenzhen Municipal Science and Technology Innovation Commission (Grant No.: JCYJ20230807140401003 ), the Research Grants from the Smart Cities Research Institute (Grant No.: CDAR and CDA9) and Research Institute for Sustainable Urban Development (Grant No.: BBWR) at the Hong Kong Polytechnic University.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-12-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-12-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.