Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116260
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.creatorArimiyaw, Den_US
dc.creatorZayed, Ten_US
dc.creatorNashat, Men_US
dc.creatorYang, Jen_US
dc.creatorKuoribo, Een_US
dc.date.accessioned2025-12-08T02:24:48Z-
dc.date.available2025-12-08T02:24:48Z-
dc.identifier.issn2644-108Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/116260-
dc.language.isoenen_US
dc.publisherISEC Pressen_US
dc.rights© 2025 ISEC Pressen_US
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Arimiyaw, D., Zayed, T., Elghandour, M., Jingchao, Y., & Kuoribo, E. (2025). MACHINE LEARNING APPROACH TO ROOT INTRUSION PREDICTION IN URBAN SEWERS USING CCTV AND ENVIRONMENTAL FEATURES. Proceedings of International Structural Engineering and Construction, 12 is available at https://doi.org/10.14455/ISEC.2025.12(1).ENV-03.en_US
dc.subjectFeature analysisen_US
dc.subjectLogistic regressionen_US
dc.subjectPreventive maintenanceen_US
dc.subjectRandom foresten_US
dc.subjectSupport vector machineen_US
dc.titleMachine learning approach to root intrusion prediction in urban sewers using CCTV and environmental featuresen_US
dc.typeConference Paperen_US
dc.identifier.spageENV-03-1en_US
dc.identifier.epageENV-03-6en_US
dc.identifier.volume12en_US
dc.identifier.issue1en_US
dc.identifier.doi10.14455/ISEC.2025.12(1).ENV-03en_US
dcterms.abstractSewer blockages from root intrusion pose significant economic and environmental challenges for water utilities worldwide. While machine learning (ML) offers promising solutions for infrastructure management, its application to this specific failure mode remains largely unexplored. This study develops a comprehensive ML framework for predicting root intrusion risk in sewer systems by integrating physical pipe attributes, environmental features, and demographic data from Hong Kong. Three classification algorithms; Logistic Regression (LR), Support Vector Machine (SVM), and Random Forest (RF) were systematically evaluated and compared. Results showed that LR and RF achieved statistically equivalent and superior performance with an AUC-ROC of 0.933, while SVM performed marginally lower at 0.914. The comparable performance of the simpler linear model (LR) with the complex ensemble method (RF) indicates that the predictive relationships are predominantly linear in nature. Feature importance analysis revealed that geographic (District) and demographic (Total Population) contextual factors were more influential predictors than specific pipe characteristics. These findings provide water utilities with a highly interpretable and effective tool for proactive asset management, enabling targeted inspections, optimized maintenance scheduling, and improved resource allocation.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationProceedings of international structural engineering and construction, Nov. 2025, v. 12, no. 1, ENV-03, p. ENV-03-1 - ENV-03-6en_US
dcterms.isPartOfProceedings of international structural engineering and constructionen_US
dcterms.issued2025-11-
dc.identifier.artnENV-03en_US
dc.description.validate202511 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera4207-
dc.identifier.SubFormID52264-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was supported by the Research Grants Council of the University Grants Committee [RGC15209022] and the General Research Fund (GRF) [GRF-15202524] in Hong Kong.en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
ENV-03.pdf803.79 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.