Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116258
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorTian, G-
dc.creatorZheng, S-
dc.creatorMo, Z-
dc.creatorXian, J-
dc.creatorChen, C-
dc.creatorFan, Z-
dc.creatorQin, M-
dc.creatorDai, JY-
dc.creatorWang, J-
dc.creatorLiu, JM-
dc.creatorGao, X-
dc.date.accessioned2025-12-05T06:28:38Z-
dc.date.available2025-12-05T06:28:38Z-
dc.identifier.issn1616-301X-
dc.identifier.urihttp://hdl.handle.net/10397/116258-
dc.language.isoenen_US
dc.publisherWiley-VCHen_US
dc.subjectBiFeO3en_US
dc.subjectFlexoelectric effecten_US
dc.subjectFreestanding filmsen_US
dc.subjectTopological domainsen_US
dc.titleFormation of polar topological domains in wrinkled bulges in freestanding BiFeO<sub>3</sub> thin filmsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume35-
dc.identifier.issue36-
dc.identifier.doi10.1002/adfm.202416311-
dcterms.abstractThis work presents a voltage-free strategy for creating and manipulating topological domains in freestanding BiFeO<inf>3</inf> films via the flexoelectric effect. By introducing bulge-like surface wrinkles into freestanding films, complexed polarization topological textures can be formed, i.e., center-type domain state with a cylinder bubble domain pattern along the vertical direction. This can be interpreted by the flexoelectric effect arising from the bulge topology, as verified by the phase-field simulation results. The observed center topological texture can also allow reversible switching between the center divergent state and the mosaic-like state driven by applying an electric field. The results provide a good example for the construction of topological domains via flexoelectric engineering, and offer opportunities for on-demand design of polar topological structures for certain nanoelectronics applications.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAdvanced functional materials, 4 Sept 2025, v. 35, no. 36, 2416311-
dcterms.isPartOfAdvanced functional materials-
dcterms.issued2025-09-04-
dc.identifier.scopus2-s2.0-105005164564-
dc.identifier.eissn1616-3028-
dc.identifier.artn2416311-
dc.description.validate202512 bcjz-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000430/2025-11en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextG.T. and S.Z. contributed equally to this work. The authors would like to thank the National Key Research and Development Programs of China (No. 2022YFB3807603), the National Natural Science Foundation of China (Nos. 92163210, U22A20117, 52402146), the Science and Technology Projects in Guangzhou (No. 202201000008), the Guangdong Basic and Applied Basic Research Foundation (Nos. 2023B1515130003, 2024A1515011608), the Postdoctoral Fellowship Program of CPSF (No. GZC20240519), the Scientific Research Cultivation Fund for Young Faculty of South China Normal University (No. 23KJ05), G.T. acknowledgements support from Hong Kong Scholar Program (No. XJ2022004).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-09-04en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-09-04
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.