Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116257
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.creatorHasan, F-
dc.creatorLiu, J-
dc.creatorLiu, X-
dc.date.accessioned2025-12-05T06:04:45Z-
dc.date.available2025-12-05T06:04:45Z-
dc.identifier.issn1361-1682-
dc.identifier.urihttp://hdl.handle.net/10397/116257-
dc.language.isoenen_US
dc.publisherWiley-Blackwellen_US
dc.subjectCellular automataen_US
dc.subjectDeep neural networksen_US
dc.subjectThree-dimensional urban growthen_US
dc.subjectUncertainty quantificationen_US
dc.subjectUrbanization scenariosen_US
dc.titleHybrid CA–deep learning model for 3D urban growth simulationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume29-
dc.identifier.issue7-
dc.identifier.doi10.1111/tgis.70139-
dcterms.abstractAccurate three-dimensional (3D) urban growth simulation is essential for sustainable planning, yet most models separate horizontal expansion from vertical intensification and lack uncertainty quantification. We present a unified framework that integrates an entropy-based cellular automata (CA) model for horizontal growth with a deep neural network (DNN) for vertical prediction. A key innovation is the pixel-wise linkage of vertical growth to newly urbanized cells identified by the CA, enabling targeted, cell-level height forecasts, reducing computational noise, and overcoming the conventional decoupling of horizontal and vertical growth. Shannon entropy quantifies transition uncertainty, enhancing model transparency and interpretability. The framework flexibly simulates diverse urbanization scenarios, including compact, business-as-usual, and suburban patterns by adjusting development pressure and constraints. Empirical results show robust performance: the CA achieves 93.2% precision and 92.85% F1-score, while the DNN attains an R2 of 0.92 for height prediction. This interpretable, scenario-driven approach provides planners with rigorous, scalable tools for 3D urban growth analysis in rapidly changing regions.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationTransactions in GIS, Nov. 2025, v. 29, no. 7, e70139-
dcterms.isPartOfTransactions in GIS-
dcterms.issued2025-11-
dc.identifier.scopus2-s2.0-105019341616-
dc.identifier.eissn1467-9671-
dc.identifier.artne70139-
dc.description.validate202512 bcjz-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000411/2025-11en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextFunding: This work was supported by the National Natural Science Foundation of China (Grant 42171455), Projects of RILS (CDL1), and RGC General Research Fund of Hong Kong (Grant 15204121) are gratefully acknowledged. The authors have nothing to report.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-11-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-11-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.