Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116245
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorFang, Xen_US
dc.creatorBi, Ken_US
dc.creatorPham, TMen_US
dc.creatorHao, Hen_US
dc.date.accessioned2025-12-05T01:55:44Z-
dc.date.available2025-12-05T01:55:44Z-
dc.identifier.issn0141-0296en_US
dc.identifier.urihttp://hdl.handle.net/10397/116245-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectBidirectional earthquake motionen_US
dc.subjectDynamic characteristicen_US
dc.subjectRubberized concrete columnen_US
dc.subjectSeismic behaviouren_US
dc.subjectShaking table testen_US
dc.titleSeismic behaviours of rubberized concrete (RuC) columns : bidirectional shaking table testen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume332en_US
dc.identifier.doi10.1016/j.engstruct.2025.120060en_US
dcterms.abstractRubberized concrete (RuC) is an environmentally friendly material, showing many merits in the field of civil and earthquake engineering. While extensive research has been done on the static and dynamic properties of RuC materials and performance of RuC structures, shaking table tests on the seismic performances of RuC structures remain limited. Based on the best knowledge of the authors through comprehensive literature searches, this paper presents the first bidirectional shaking table test to investigate the seismic behaviours of RuC columns with different rubber volume fractions (R<inf>v</inf>) subjected to ground excitations of different peak ground accelerations (PGAs). Results showed the RuC columns were generally more ductile, deformable and energy-dissipative than the conventional concrete column, while the loading-capacity could be significantly reduced when using an excessive rubber replacement. Notably, the column with 10 % rubber replacement, i.e., 10 % RuC column exhibited up to a 9.72 % increase in lateral drift capacity and a 73.33 % reduction in residual displacement compared to the conventional column. The 10 % RuC column in average reduced the peak acceleration response by 32.05 %. Importantly, the bidirectional earthquake ground motion induced complex seismic responses, highlighting the necessity of incorporating these effects in the seismic design and analysis.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEngineering structures, 1 June 2025, v. 332, 120060en_US
dcterms.isPartOfEngineering structuresen_US
dcterms.issued2025-06-01-
dc.identifier.scopus2-s2.0-86000620452-
dc.identifier.eissn1873-7323en_US
dc.identifier.artn120060en_US
dc.description.validate202512 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000441/2025-11-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-06-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-06-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.