Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116241
Title: Superior energy management for fuel cell vehicles guided by improved DDPG algorithm : integrating driving intention speed prediction and health-aware control
Authors: Jia, C 
Liu, W 
He, H
Chau, KT 
Issue Date: 15-Sep-2025
Source: Applied energy, 15 Sept. 2025, v. 394, 126195
Abstract: Despite the significant advantages of fuel cell (FC) vehicles in reducing urban air pollution and extending driving range, effectively managing their internal energy systems remains a major challenge. To maximize the operational efficiency and lifespan of the FC system without compromising fuel economy, this paper proposes a novel predictive energy management paradigm guided by deep reinforcement learning. This strategy innovatively integrates driving intention speed prediction and health-aware control. Specifically, we developed a multi-input bi-directional long short-term memory (BiLSTM) predictor incorporating driving intentions (DI-BiLSTM) using the fuzzy C-means algorithm to enhance the prediction accuracy of future vehicle state trajectories. Downstream control decisions are executed through an improved deep deterministic policy gradient (DDPG) algorithm, which optimizes action space selection based on the degradation characteristics of the FC system. Additionally, during the training and validation phases of the energy management strategy (EMS), we utilized high-quality driving data collected from real bus routes using a high-performance Beidou integrated navigation system, replacing conventional standard driving cycles to enhance the strategy's generalization ability across different scenarios. The results indicate that, compared with conventional prediction model relying solely on historical speed data, the DI-BiLSTM improves prediction accuracy by at least 7.86 % over 3 s, 5 s, and 8 s prediction horizons. Compared with conventional DDPG-based EMS, the proposed EMS increases the average efficiency of the FC system by 32.18 % and extends its lifespan by 16.50 %. In terms of overall driving costs, the proposed EMS improves driving economy by 9.97 % compared with conventional DDPG-based EMS.
Keywords: Deep reinforcement learning
Driving intention fusion
Energy management strategy
Fuel cell bus
Health-aware control
Publisher: Pergamon Press
Journal: Applied energy 
ISSN: 0306-2619
EISSN: 1872-9118
DOI: 10.1016/j.apenergy.2025.126195
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 2027-09-15
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.