Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116197
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineering-
dc.creatorMusah, JD-
dc.creatorOr, SW-
dc.date.accessioned2025-11-28T06:39:29Z-
dc.date.available2025-11-28T06:39:29Z-
dc.identifier.issn0002-7820-
dc.identifier.urihttp://hdl.handle.net/10397/116197-
dc.language.isoenen_US
dc.publisherWiley-Blackwellen_US
dc.subjectBismuth tellurideen_US
dc.subjectBlack phosphorus (BP)en_US
dc.subjectFlexible devicesen_US
dc.subjectHydrogel-Bi2Te3 hybriden_US
dc.subjectWearable thermoelectric generator (WTEG)en_US
dc.titleBioinspired 3D BP-doped Bi₂Te₃/hydrogel hybrid films : ultra-efficient flexible TEGs for wearable energy harvestingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume109-
dc.identifier.issue1-
dc.identifier.doi10.1111/jace.70293-
dcterms.abstractFlexible thermoelectric materials capable of efficiently converting low-grade body heat into electricity are crucial for self-powered wearable electronics, yet remain elusive due to the competing requirements of high energy conversion efficiency, mechanical resilience, and environmental adaptability. Here, we present a synergistic integration of black phosphorus (BP)-doped Bi<inf>2</inf>Te<inf>3</inf> with a biomimetic 3D hydrogel, resulting in a hybrid film that simultaneously achieves high thermoelectric performance and enhanced flexibility. Black phosphorus (BP) doping induces dual carrier-phonon engineering in Bi<inf>2</inf>Te<inf>3</inf>, boosting the figure of merit (zT) to 0.7 over a temperature range of 300–480 K, that is, 40% higher than pristine Bi<inf>2</inf>Te<inf>3</inf>. At the same time, the hydrogel's bioinspired architecture provides exceptional mechanical durability, conformal skin contact, and thermal insulation to sustain operational temperature gradients. The resulting wearable thermoelectric generator delivers an open-circuit voltage (OCV) of 275 mV and a power density (P<inf>D</inf>) of 23.1 (Formula presented.), an ultra-high thermoelectric efficiency for flexible Bi<inf>2</inf>Te<inf>3</inf>-based devices. This work establishes a scalable, eco-friendly platform for wearable thermoelectrics, demonstrating extensibility to narrow-gap materials where synergistic dopant engineering and nanostructuring improve the efficiency to power the next generation of autonomous health monitors and the Internet of Things ecosystems.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationJournal of the American Ceramic Society, Jan. 2026, v. 109, no. 1, e70293-
dcterms.isPartOfJournal of the American Ceramic Society-
dcterms.issued2026-01-
dc.identifier.scopus2-s2.0-105018606245-
dc.identifier.eissn1551-2916-
dc.identifier.artne70293-
dc.description.validate202511 bcel-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000426/2025-11en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was supported by the Innovation and Tech-nology Commission of the HKSAR Government to theHong Kong Branch of National Rail Transit Electrificationand Automation Engineering Technology Research Centerunder grant no. K-BBY1.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-01-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-01-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.