Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116106
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.contributorResearch Centre for Resources Engineering towards Carbon Neutralityen_US
dc.creatorDeng, Ten_US
dc.creatorGeng, Len_US
dc.creatorZhang, Hen_US
dc.creatorDing, Ren_US
dc.creatorQian, Xen_US
dc.creatorLi, Len_US
dc.creatorXu, Ten_US
dc.creatorWu, Wen_US
dc.creatorChen, Zen_US
dc.creatorChen, Jen_US
dc.creatorXie, Yen_US
dc.date.accessioned2025-11-19T06:16:30Z-
dc.date.available2025-11-19T06:16:30Z-
dc.identifier.issn1385-8947en_US
dc.identifier.urihttp://hdl.handle.net/10397/116106-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectBiomimetic coatingsen_US
dc.subjectMechanical robustnessen_US
dc.subjectNacre-like structureen_US
dc.subjectSelf-similar architectureen_US
dc.subjectSuperamphiphobicityen_US
dc.titleResolving the liquid repellency–mechanical durability trade-off via a biomimetic nacre-like superamphiphobic architectureen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume520en_US
dc.identifier.doi10.1016/j.cej.2025.166032en_US
dcterms.abstractSuperamphiphobic (SAP) and superhydrophobic (SH) coatings often suffer from poor mechanical robustness, leading to a fundamental trade-off between liquid repellency and abrasion resistance. Here, we report a biomimetic multilayered coating inspired by nacre, constructed via cyclic spray deposition of resin and SAP or SH functional SiO2 nanoparticle (NP). This architecture forms a vertically redundant “brick–mortar” structure with a self-similar interpenetrated structure. The resulting coatings exhibit stable water and oil repellency (CA > 150°, SA < 10°) across diverse substrates including glass, Al sheet, and cement. Unlike conventional single-layer and one-cycle primer–topcoat systems, the multilayered design significantly enhances the mechanical durability of the as-fabricated coatings by maintaining their SH performances even after experiencing over 1800 cycles of sandpaper abrasion test or >60 min of water jet impact. Structural characterization and elemental mapping reveal a consistent distribution of functional nanoparticles throughout the depth, confirming the absence of discrete interface layers and enabling adaptive surface renewal during wear. The coatings further demonstrate strong resistance to ultraviolet aging, sand impact, strong acid, salt, and alkaline environments. This work provides a universal strategy for overcoming the liquid repellency–durability conflict in SAP and SH materials through scalable, nacre-inspired layer engineering, offering practical implications for protective coatings in harsh mechanical settings and corrosion environments.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationChemical engineering journal, 15 Sept 2025, v. 520, 166032en_US
dcterms.isPartOfChemical engineering journalen_US
dcterms.issued2025-09-15-
dc.identifier.scopus2-s2.0-105011166897-
dc.identifier.eissn1873-3212en_US
dc.identifier.artn166032en_US
dc.description.validate202511 bcjzen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000365/2025-08-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work is supported by National Natural Science Foundation of China (No. U24B2094).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-09-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-09-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.