Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/116011
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Social Sciences-
dc.contributorDepartment of Data Science and Artificial Intelligence-
dc.creatorXu, P-
dc.creatorNi, R-
dc.creatorChen, S-
dc.creatorMa, Z-
dc.creatorZhong, C-
dc.date.accessioned2025-11-18T06:48:56Z-
dc.date.available2025-11-18T06:48:56Z-
dc.identifier.urihttp://hdl.handle.net/10397/116011-
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.rightsCopyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Xu, P., Ni, R., Chen, S., Ma, Z., & Zhong, C. (2025). Nonparametric Transformation Models for Double-Censored Data with Crossed Survival Curves: A Bayesian Approach. Mathematics, 13(15), 2461 is available at https://doi.org/10.3390/math13152461.en_US
dc.subjectBayesian analysisen_US
dc.subjectDouble censoringen_US
dc.subjectHeteroscedasticityen_US
dc.subjectTransformation modelsen_US
dc.titleNonparametric transformation models for double-censored data with crossed survival curves : a Bayesian approachen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume13-
dc.identifier.issue15-
dc.identifier.doi10.3390/math13152461-
dcterms.abstractDouble-censored data are frequently encountered in pharmacological and epidemiological studies, where the failure time can only be observed within a certain range and is otherwise either left- or right-censored. In this paper, we present a Bayesian approach for analyzing double-censored survival data with crossed survival curves. We introduce a novel pseudo-quantile I-splines prior to model monotone transformations under both random and fixed censoring schemes. Additionally, we incorporate categorical heteroscedasticity using the dependent Dirichlet process (DDP), enabling the estimation of crossed survival curves. Comprehensive simulations further validate the robustness and accuracy of the method, particularly under the fixed censoring scheme, where traditional approaches may NOT be applicable. In the randomized AIDS clinical trial, by incorporating the categorical heteroscedasticity, we obtain a new finding that the effect of baseline log RNA levels is significant. The proposed framework provides a flexible and reliable tool for survival analysis, offering an alternative to parametric and semiparametric models.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematics, Aug. 2025, v. 13, no. 15, 2461-
dcterms.isPartOfMathematics-
dcterms.issued2025-08-
dc.identifier.scopus2-s2.0-105013353922-
dc.identifier.eissn2227-7390-
dc.identifier.artn2461-
dc.description.validate202511 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextZ.M. is partially supported by Guangdong Basic and Applied Basic Research Foundation (2021A1515110220).en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
mathematics-13-02461-v3.pdf365.7 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.